• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YOU Lihua, CAI Xiaoqun. The integer solutions of the Diophantine equation[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(3): 103-107. DOI: 10.6054/j.jscnun.2019051
Citation: YOU Lihua, CAI Xiaoqun. The integer solutions of the Diophantine equation[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(3): 103-107. DOI: 10.6054/j.jscnun.2019051

The integer solutions of the Diophantine equation

Funds: 

;Natural Science Foundation of Guangdong province, China

More Information
  • Received Date: October 08, 2018
  • Revised Date: December 17, 2018
  • his paper proves that the Diophantine equation ~x2+4n=y9~ has no integer solution by using the method of algebraic number theory, where ~x1(mod2)~, and further shows that the Diophantine equation ~x2+4n=y9~(n=6,7,8) has no integer solution. Then it shows that the Diophantine equation ~x2+4n=y9~ has integer solution only when ~n0(mod9)~ and ~n4(mod9), say, the Diophantine equation ~x2+4n=y9~ has integer solutions ~(x,y)=(0,4m)~ when n=9m, and the Diophantine equation ~x2+4n=y9~ has integer solutions ~(x,y)=(±16×29m,2×4m)~ when n=9m+4, where nN. Furthermore, based on the results of k=5,9, the paper proposes a conjecture about the integer solutions of the Diophantine equation ~x2+4n=yk for further research, where k is odd.
  • Related Articles

    [1]LI Dongxing, ZHUO Zhengyuan, ZENG Tiaoying. The Multiplier Algebra of Dirichlet Space[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 88-92. DOI: 10.6054/j.jscnun.2023067
    [2]WEI Anli, LI Ying, ZHAO Jianli, DING Wenxu. The Matrix Expression of Finite FI Algebra[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 102-108. DOI: 10.6054/j.jscnun.2022091
    [3]YIN Qianqian, LIANG Xinran, YUAN Pingzhi. Solutions to a Class of Equations in Integral Matrices of Order 2[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 104-109. DOI: 10.6054/j.jscnun.2019091
    [4]Gr\"{o}bner-Shirshov Bases for Universal Algebras[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(6): 1-9.
    [5]Existence of classical solutions for a class of parabolic equations with gradient terms[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(1). DOI: 10.6054/j.jscnun.2012.12.004
    [6]LI Hai-Yan. STUDY ON THE TSCHEBYSCHEFF-TYPE EQUATIONS[J]. Journal of South China Normal University (Natural Science Edition), 2011, 0(1).
    [7]HUANG Zhi-Bo, LI Qian. Subnormal Solutions of higher Order Linear Differential Equations with Periodic Coefficients[J]. Journal of South China Normal University (Natural Science Edition), 2010, 1(1): 2-2 .
    [8]On Solutions of Fermat Equations in a real quadratic field[J]. Journal of South China Normal University (Natural Science Edition), 2009, 1(4): 26-28 .
    [9]Zong-Xuan CHEN, . RELATION BETWEEN THE COEFFICIENTS AND SOLUTIONS OF THE DIFFERENTIAL EQUATIONS IN THE DISC AND ITS APPLICATION[J]. Journal of South China Normal University (Natural Science Edition), 2009, 1(2): 12-15 .
    [10]The Ideal Lattices Of Balanced Pseudocomplemented Ockham Algebras[J]. Journal of South China Normal University (Natural Science Edition), 2007, 1(2).
  • Cited by

    Periodical cited type(5)

    1. 陈一维,柴向阳. 丢番图方程x~2+(2n)~2=y~9(1≤n≤7)的整数解. 重庆工商大学学报(自然科学版). 2021(01): 92-98 .
    2. 蔡小群. 关于不定方程x~2+4~n=y~(11)的整数解. 重庆工商大学学报(自然科学版). 2021(01): 99-104 .
    3. 赵萍,尤利华,刘秀湘. 基于“一生一优课”的教育硕士课程实践教学模式探索. 华南师范大学学报(自然科学版). 2021(04): 121-128 .
    4. 钟焕旻,黄宇飞. 不定方程x~2+4~n=y~(13)整数解的完全刻画. 新疆师范大学学报(自然科学版). 2020(02): 34-38 .
    5. 林暖,王仕仪. 关于方程x~2+2~(2k)=y~m的一点注记. 高师理科学刊. 2020(10): 11-12+22 .

    Other cited types(1)

Catalog

    Article views (1730) PDF downloads (32) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return