• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WEI Anli, LI Ying, ZHAO Jianli, DING Wenxu. The Matrix Expression of Finite FI Algebra[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 102-108. DOI: 10.6054/j.jscnun.2022091
Citation: WEI Anli, LI Ying, ZHAO Jianli, DING Wenxu. The Matrix Expression of Finite FI Algebra[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 102-108. DOI: 10.6054/j.jscnun.2022091

The Matrix Expression of Finite FI Algebra

More Information
  • Received Date: August 26, 2021
  • Available Online: February 13, 2023
  • The theory of the semi-tensor product of matrices is applied to systematic matrix description of FI algebra, and the matrix expressions of FI algebra are presented. Via these matrix expressions, the properties of the homomorphisms, isomorphisms and related structures of the derivatives of the FI algebra are studied. At the same time, straightforward verifiable conditions for detecting the properties above are obtained by using logical matrices operations.
  • [1]
    吴望名. Fuzzy蕴涵代数[J]. 模糊系统与数学, 1990, 4(1): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE199001010.htm

    WU W M. Fuzzy implication algebras[J]. Fuzzy Systems and Mathematics, 1990, 4(1): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE199001010.htm
    [2]
    CHANG C C. Algebraic analysis of many valued logics[J]. Transactions of the American Mathematical Society, 1958, 88(2): 467-490. doi: 10.1090/S0002-9947-1958-0094302-9
    [3]
    HAJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer, 1998.
    [4]
    王国俊. 模糊命题演算的一种形式演绎系统[J]. 科学通报, 1997, 42(10): 1041-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199710004.htm
    [5]
    PAVELKA J. On fuzzy logic I many-valued rules of infe-rence[J]. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 1979, 25: 45-52. doi: 10.1002/malq.19790250304
    [6]
    徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199301003.htm

    XU Y. Lattice implication algebras[J]. Journal of Southwest Jiaotong University, 1993(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199301003.htm
    [7]
    王国俊. MV-代数、BL-代数、R0-代数与多值逻辑[J]. 模糊系统与数学, 2002, 16(2): 1-15. doi: 10.3969/j.issn.1001-7402.2002.02.001

    WANG G J. MV-algebra, BL-algebra, R0-algebras and multiple-valued logic implication algebras[J]. Fuzzy Systems and Mathematics, 2002, 16(2): 1-15. doi: 10.3969/j.issn.1001-7402.2002.02.001
    [8]
    XU Y, RUAN D, QIN K Y, et al. Lattice-valued logic[M]. Berlin: Springer, 2003.
    [9]
    ZHU Y Q, XU Y. On filter theory of residuated lattices[J]. Information Sciences, 2010, 180(19): 3614-3632. doi: 10.1016/j.ins.2010.05.034
    [10]
    裴道武, 王三民, 杨瑞. 模糊蕴涵格理论[J]. 高校应用数学学报: A辑, 2011, 26(3): 343-354. doi: 10.3969/j.issn.1000-4424.2011.03.012

    PEI D W, WANG S M, YANG R. Theory of fuzzy implication lattices[J]. Applied Mathematics A Journal of Chinese Universities, 2011, 26(3): 343-354. doi: 10.3969/j.issn.1000-4424.2011.03.012
    [11]
    朱怡权. 基于FI-代数的一个逻辑系统[J]. 模糊系统与数学, 2005, 19(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200502005.htm

    ZHU Y Q. A logic system based on FI-algebras and its completeness[J]. Fuzzy Systems and Mathematics, 2005, 19(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200502005.htm
    [12]
    张花荣, 兰蓉. 剩余格与FI代数的可嵌入性[J]. 模糊系统与数学, 2003, 17(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200301003.htm

    ZHANG H R, LAN R. The embeddability of residuated lattice and FI algebra[J]. Fuzzy Systems and Mathema-tics, 2003, 17(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200301003.htm
    [13]
    吴达. 可交换的Fuzzy蕴涵代数[J]. 模糊系统与数学, 1999, 13(1): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE901.005.htm

    WU D. Commutative Fuzzy implication algebra[J]. Fuzzy Systems and Mathematics, 1999, 13(1): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE901.005.htm
    [14]
    刘春辉, 徐罗山. 赋范Fuzzy蕴涵代数[J]. 扬州大学学报: 自然科学版, 2009, 12(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YZDZ200903002.htm

    LIU C H, XU L S. Normed Fuzzy implication algebras[J]. Journal of Yangzhou University(Natural Science Edition), 2009, 12(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YZDZ200903002.htm
    [15]
    FENG J E, YAO J, CUI P. Singular boolean networks: semi-tensor product approach[J]. Science China(Information Sciences), 2013, 56(11): 265-278. doi: 10.1007/s11432-012-4666-8
    [16]
    高博. 基于半张量积的几类密码算法的研究[D]. 北京: 北京交通大学, 2014.

    GAO B. Research on encryptin algorithm based on semi-tensor product[D]. Beijing: Beijing Jiaotong University, 2014.
    [17]
    XU M R, WANG Y Z, WEI A R. Robust graph coloring based on the matrix semi-tensor product with application to examination timetabling[J]. Control Theory and Application, 2014, 12(2): 187-197. doi: 10.1007/s11768-014-0153-7
    [18]
    LU J Q, LI M L, HUANG T W, et al. The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via semi-tensor product of matrices[J]. Automatica, 2018, 96: 393-397. https://www.sciencedirect.com/science/article/pii/S0005109818303571
    [19]
    WU Y H, SHEN T L. Policy iteration approach to control residual gas fraction in IC engines under the framework of stochastic logical dynamics[J]. IEEE Transactions on Control Systems Technology, 2016, 25(3): 1100-1107.
    [20]
    CHENG D Z, QI H S, LI Z Q. Analysis and control of boolean networks: a semi-tensor product approach[M]. London: Springer, 2011.
    [21]
    丁文旭, 李莹, 王栋, 等. 矩阵半张量积在求解复线性系统的特殊Toeplitz解中的应用[J]. 聊城大学学报(自然科学版), 2021, 34(4): 1-6;36. https://www.cnki.com.cn/Article/CJFDTOTAL-TALK202104001.htm

    DING W X, LI Y, WANG D, et al. Application of semi-tensor product in solving special Toeplitz solution of complex linear systems[J]. Journal of Liaocheng University(Natural Science Edition), 2021, 34(4): 1-6;36. https://www.cnki.com.cn/Article/CJFDTOTAL-TALK202104001.htm
    [22]
    CHENG D Z, LI Y, FENG J E, et al. On numerical/non-numerical algebra: semi-tensor product method[J]. Mathematical Modelling and Control, 2021, 1(1): 1-11.
    [23]
    刘慧. FI-代数上的导子与伪CI-代数中的滤子[D]. 西安: 陕西师范大学, 2017.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (404) PDF downloads (32) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return