Citation: | WEI Anli, LI Ying, ZHAO Jianli, DING Wenxu. The Matrix Expression of Finite FI Algebra[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 102-108. DOI: 10.6054/j.jscnun.2022091 |
[1] |
吴望名. Fuzzy蕴涵代数[J]. 模糊系统与数学, 1990, 4(1): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE199001010.htm
WU W M. Fuzzy implication algebras[J]. Fuzzy Systems and Mathematics, 1990, 4(1): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE199001010.htm
|
[2] |
CHANG C C. Algebraic analysis of many valued logics[J]. Transactions of the American Mathematical Society, 1958, 88(2): 467-490. doi: 10.1090/S0002-9947-1958-0094302-9
|
[3] |
HAJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer, 1998.
|
[4] |
王国俊. 模糊命题演算的一种形式演绎系统[J]. 科学通报, 1997, 42(10): 1041-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199710004.htm
|
[5] |
PAVELKA J. On fuzzy logic I many-valued rules of infe-rence[J]. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 1979, 25: 45-52. doi: 10.1002/malq.19790250304
|
[6] |
徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199301003.htm
XU Y. Lattice implication algebras[J]. Journal of Southwest Jiaotong University, 1993(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199301003.htm
|
[7] |
王国俊. MV-代数、BL-代数、R0-代数与多值逻辑[J]. 模糊系统与数学, 2002, 16(2): 1-15. doi: 10.3969/j.issn.1001-7402.2002.02.001
WANG G J. MV-algebra, BL-algebra, R0-algebras and multiple-valued logic implication algebras[J]. Fuzzy Systems and Mathematics, 2002, 16(2): 1-15. doi: 10.3969/j.issn.1001-7402.2002.02.001
|
[8] |
XU Y, RUAN D, QIN K Y, et al. Lattice-valued logic[M]. Berlin: Springer, 2003.
|
[9] |
ZHU Y Q, XU Y. On filter theory of residuated lattices[J]. Information Sciences, 2010, 180(19): 3614-3632. doi: 10.1016/j.ins.2010.05.034
|
[10] |
裴道武, 王三民, 杨瑞. 模糊蕴涵格理论[J]. 高校应用数学学报: A辑, 2011, 26(3): 343-354. doi: 10.3969/j.issn.1000-4424.2011.03.012
PEI D W, WANG S M, YANG R. Theory of fuzzy implication lattices[J]. Applied Mathematics A Journal of Chinese Universities, 2011, 26(3): 343-354. doi: 10.3969/j.issn.1000-4424.2011.03.012
|
[11] |
朱怡权. 基于FI-代数的一个逻辑系统[J]. 模糊系统与数学, 2005, 19(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200502005.htm
ZHU Y Q. A logic system based on FI-algebras and its completeness[J]. Fuzzy Systems and Mathematics, 2005, 19(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200502005.htm
|
[12] |
张花荣, 兰蓉. 剩余格与FI代数的可嵌入性[J]. 模糊系统与数学, 2003, 17(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200301003.htm
ZHANG H R, LAN R. The embeddability of residuated lattice and FI algebra[J]. Fuzzy Systems and Mathema-tics, 2003, 17(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200301003.htm
|
[13] |
吴达. 可交换的Fuzzy蕴涵代数[J]. 模糊系统与数学, 1999, 13(1): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE901.005.htm
WU D. Commutative Fuzzy implication algebra[J]. Fuzzy Systems and Mathematics, 1999, 13(1): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE901.005.htm
|
[14] |
刘春辉, 徐罗山. 赋范Fuzzy蕴涵代数[J]. 扬州大学学报: 自然科学版, 2009, 12(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YZDZ200903002.htm
LIU C H, XU L S. Normed Fuzzy implication algebras[J]. Journal of Yangzhou University(Natural Science Edition), 2009, 12(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YZDZ200903002.htm
|
[15] |
FENG J E, YAO J, CUI P. Singular boolean networks: semi-tensor product approach[J]. Science China(Information Sciences), 2013, 56(11): 265-278. doi: 10.1007/s11432-012-4666-8
|
[16] |
高博. 基于半张量积的几类密码算法的研究[D]. 北京: 北京交通大学, 2014.
GAO B. Research on encryptin algorithm based on semi-tensor product[D]. Beijing: Beijing Jiaotong University, 2014.
|
[17] |
XU M R, WANG Y Z, WEI A R. Robust graph coloring based on the matrix semi-tensor product with application to examination timetabling[J]. Control Theory and Application, 2014, 12(2): 187-197. doi: 10.1007/s11768-014-0153-7
|
[18] |
LU J Q, LI M L, HUANG T W, et al. The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via semi-tensor product of matrices[J]. Automatica, 2018, 96: 393-397. https://www.sciencedirect.com/science/article/pii/S0005109818303571
|
[19] |
WU Y H, SHEN T L. Policy iteration approach to control residual gas fraction in IC engines under the framework of stochastic logical dynamics[J]. IEEE Transactions on Control Systems Technology, 2016, 25(3): 1100-1107.
|
[20] |
CHENG D Z, QI H S, LI Z Q. Analysis and control of boolean networks: a semi-tensor product approach[M]. London: Springer, 2011.
|
[21] |
丁文旭, 李莹, 王栋, 等. 矩阵半张量积在求解复线性系统的特殊Toeplitz解中的应用[J]. 聊城大学学报(自然科学版), 2021, 34(4): 1-6;36. https://www.cnki.com.cn/Article/CJFDTOTAL-TALK202104001.htm
DING W X, LI Y, WANG D, et al. Application of semi-tensor product in solving special Toeplitz solution of complex linear systems[J]. Journal of Liaocheng University(Natural Science Edition), 2021, 34(4): 1-6;36. https://www.cnki.com.cn/Article/CJFDTOTAL-TALK202104001.htm
|
[22] |
CHENG D Z, LI Y, FENG J E, et al. On numerical/non-numerical algebra: semi-tensor product method[J]. Mathematical Modelling and Control, 2021, 1(1): 1-11.
|
[23] |
刘慧. FI-代数上的导子与伪CI-代数中的滤子[D]. 西安: 陕西师范大学, 2017.
|