Processing math: 0%
  • Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YIN Qianqian, LIANG Xinran, YUAN Pingzhi. Solutions to a Class of Equations in Integral Matrices of Order 2[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 104-109. DOI: 10.6054/j.jscnun.2019091
Citation: YIN Qianqian, LIANG Xinran, YUAN Pingzhi. Solutions to a Class of Equations in Integral Matrices of Order 2[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(5): 104-109. DOI: 10.6054/j.jscnun.2019091

Solutions to a Class of Equations in Integral Matrices of Order 2

More Information
  • Received Date: December 17, 2018
  • Available Online: March 08, 2021
  • To solve problems of integer matrix equations related to Pythagorean equation x2+y2=z2, the solutions ( X , Y ) to the 2×2 integral matrix equation {\mathit{\boldsymbol{X}}^2} + {\mathit{\boldsymbol{Y}}^2} = \lambda \mathit{\boldsymbol{I}} , where \lambda \in \mathbb{Z} and I is the unit matrix, which are related to the Pythagorean equation, are investigated and completely solved by using the basic operation of matrix to transform the problem of integer matrix equation into the problem of solving some Diophantine equations, which is gradually extended from the special case to the general case. The solutions to 2×2 integral matrix equation {\mathit{\boldsymbol{X}}^2} - {\mathit{\boldsymbol{Y}}^2} = \lambda \mathit{\boldsymbol{I}} also can be solved with similar methods.
  • [1]
    张景晓.整数矩阵的性质及应用[J].重庆理工大学学报(自然科学版), 2010, 24(4):117-118. doi: 10.3969/j.issn.1674-8425-B.2010.04.023

    ZHANG J X. Basic properties of integer matrix and its app-lication[J]. Journal of Chongqing University of Techno-logy(Natural Science), 2010, 24(4):117-118. doi: 10.3969/j.issn.1674-8425-B.2010.04.023
    [2]
    王兆顺.整数矩阵及其应用[J].韶关学院学报(自然科学版), 2006, 27(3):9-11. http://d.old.wanfangdata.com.cn/Periodical/sgxyxb200603003

    WANG Z S. Integers matrix and its application[J]. Journal of Shaoguan University(Natural Science), 2006, 27(3):9-11. http://d.old.wanfangdata.com.cn/Periodical/sgxyxb200603003
    [3]
    LAM C W H. On the some solution of Ak=dI+λJ[J]. Journal of Combinatorial Theory:Series A, 1978, 23:140-147. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_gr-qc%2f9909048
    [4]
    钟祥贵.整数环上一类二阶矩阵方程的解[J].大学数学, 2006, 22(4):71-74. doi: 10.3969/j.issn.1672-1454.2006.04.017

    ZHONG X G. The solution of 2×2 matrices equations An=kE with integer entries[J]. College Mathematics, 2006, 22(4):71-74. doi: 10.3969/j.issn.1672-1454.2006.04.017
    [5]
    乐茂华.关于整数矩阵集上的Fermat方程[J].吉首大学学报(自然科学版), 1998, 19(3):11-12.

    LE M H. On Fermat's equation in the set of integral matrices[J]. Journal of Jishou University(Natural Science Edition), 1998, 19(3):11-12.
    [6]
    FREJMAN D. On Fermat's equation in the set of Fibonacci matrices[J]. Discussiones Mathematicae, 1995, 13:61-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjsfxyxb200506005
    [7]
    赵院娥, 车顺.整数矩阵集上的Fermat方程[J].西北大学学报(自然科学版), 2014, 44(3):360-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdxxb201403004

    ZHAO Y E, CHE S. Fermat's equation in the set of integral matrices[J]. Journal of Northwest University(Natural Science Edition), 2014, 44(3):360-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdxxb201403004
    [8]
    LI Q, LE M H. On Fermat's equation in integral 2×2 matrices[J]. Discussiones Mathematicae, 1995, 15:135-136.
    [9]
    GRYTCZUC A. On Fermat's equation in the set of integral 2×2 matrices[J]. Periodica Mathematica Hungarica, 1995, 30(1):67-72. doi: 10.1007/BF01876927
    [10]
    李伟勋.关于2阶整数矩阵的Catalan方程[J].广东石油化工学院学报, 2016, 26(4):59-60. doi: 10.3969/j.issn.2095-2562.2016.04.015

    LI W X. On the Catalan's equation in 2×2 matrices[J]. Journal of Guangdong University of Petrochemical Technology, 2016, 26(4):59-60. doi: 10.3969/j.issn.2095-2562.2016.04.015
  • Cited by

    Periodical cited type(1)

    1. 万姿君. 中国研学旅行线路的空间分异. 西部旅游. 2022(22): 51-53+56 .

    Other cited types(3)

Catalog

    Article views (2072) PDF downloads (45) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return