• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
First-Principles Investigations of the electronic structures and optical Properties of SnO2 with In and Ga Defects[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(3): 1-6.
Citation: First-Principles Investigations of the electronic structures and optical Properties of SnO2 with In and Ga Defects[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(3): 1-6.

First-Principles Investigations of the electronic structures and optical Properties of SnO2 with In and Ga Defects

More Information
  • Received Date: January 31, 2016
  • Revised Date: February 29, 2016
  • Based on the ultra-soft pseudopotential approach of the plane-wave based upon density functional theory, the supercell of pure SnO2, SnO2:In, SnO2:Ga and SnO2:(In, Ga) model was established, its geometry structure was optimized, and the band structures, density of states, charge density and optical properties were obtained. The results show that the lattice constant of SnO2:(In, Ga) is more close to the pure SnO2, comparing with the SnO2:In and nO2:Ga, which can effectively reduce the lattice distortion of doped SnO2. The bandgap value increase and the band structure move toward the high energy direction for the doped SnO2, presenting p-type features. For the co-doped SnO2:(In,Ga), the electron clouds of the In (Ga) and O atoms have shown the characteristics of covalent bond. For the SnO2:(In, Ga), when the photon energy about 0~2.45eV and greater than 6.27eV, the crystal performance shows pretty dielectric character, which has a good application prospect in tiny microelectronic sensor mechanical system device and high density information storage. SnO2:(In, Ga) will be widely used in the photoelectric device for its strongly absorption capacity of light energy, the absorption coefficient reached to 105 cm-1.
  • [1] Dolbec R,E I Khakani M A,Serventi A M,Trudeau M,Saint Jacques R G. Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition [J].Thin Solid Films,2002,419 (1-2):230-236. DOI:10.1016/S0040-6090(02)00769-1
    [2] Aukkaravittayapun S, Wongtida N, Kasecwatin T, Charojrochkul S, Unnanon K, Chindaudom K. Large scale F-doped SnO2 coating on glass by spray pyrolysis [J]. Thin Solid Films,2006,496(1):117-120. DOI:10.1016/j.tsf.2005.08.259
    [3] BATZILL M, KATSIEV K, DIEBOLD U. Surface morphologies of SnO2 (110) [J].Surface Science,2003, 529:295- 311. DOI:10.1016/S0039-6028(03)00357-1
    [4] BATZILL M, KATSIEV K, JAMES M. Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: Structure, composition,and electronic properties [J]. Physical Review B, 2005,72(16):165414-20. DOI:10.1103/PhysRevB.72.165414
    [5] SAHAR Vahdatifar, ABBAS ALI Khodadadi,YADOLLAH Mortazavi. Effects of nano additives on stability of Pt/SnO2 as a sensing material for detection of CO [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2014,191:421-430. DOI:10.1016/j.snb. 2013.10.010
    [6] SIMON D E, SIMON P B. Energetically accessible reconstructions along interstitial rows on the rutile (110) surface [J]. Physical Chemistry and Chemical Physics,2001,3: 1954- 1957. DOI:10.1039/b101804n
    [7] BUSIAKIEWICZ A, KLUSEK Z,ROGALA M, The new high- temperature surface structure on reduced TiO2(001) [J]. Journal of Physics: Condensd Matter, 2010, 22: 395501-6. DOI:10.1088/0953-8984/22/39/395501
    [8] LIU Huixuan. Double-gate SnO2 nanowire electric-double-layer transistors with tunable threshold voltage [J]. APPLIED PHYSICS LETTERS, 2015, 106: 233114. DOI:10.1063/ 1. 4922453
    [9] MATTI A, JASKARI M, TAPIO T R. Band structure and optical parameters of the SnO2 (110) surface [J]. Physical Review B,2001,64:075407- 075414. DOI:10.1103/Phy\ sRevB. 64.075407
    [10] JI Z, Zhao L, HE Z P , ZHOU Q and CHEN C. Transparent p-type conducting indium-doped SnO2 thin films deposited by spray pyrolysis [J]. Mater.Lett. 2006, 60:1387-1389. DOI:10.10 16/j.matlet.2005.11.057
    [11] Tsay C Y, Liang S C.Fabrication of p-type conductivity in SnO2 thin films through Ga doping [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 622:644-650. DOI:10.1016/j.jallcom.2014.10.003
    [12] MAO Qinan, JI Zhenguo and Lina Zhao. Mobility enhancement of p-type SnO2 by In–Ga co-doping [J]. Phys. Status Solidi, 2010, 2: 299-302. DOI:10.1002/pssb.200945545
    [13] LIU Y M, Zhao L Z, Qin K N, Cui Z Y, Li S J. First-principles study of effects of Al doping on electronic structures and optical properties of SnO2 [J]. Materials Research Innovations, 2014, 18: 522-526. DOI: 10.1179/1432891714Z.000000000487
    [14] Segall M D, Philip J D L, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. Journal of Physics Condensed Matter, 2002, 14(11): 2717-2744. PII: S09 53-8984(02)32831-5
    [15] Thangaraju B. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor [J]. Thin Solid Films ,2002, 402(1):71-78. DOI: 10.1016/S0040-6090(01)01667-4
    [16] Yu B,Zhu C and Gan.F. Exciton spectra of SnO2 nanocrystals with surficial dipole layer [J]. Opt. Mater, 1997, 7:15-20. PII:S0925-3467(96)00060-2
    [17] 徐 剑, 黄水平, 王占山, 等. F掺杂SnO2电子结构的模拟计算 [J]. 物理学报, 2007, 56(12): 7195-7200. DOI: 1000-3290/2007/56(12)/7195-06
    [18] Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J. Electronic structure and optical properties of ZnO doped with carbon [J]. Acta Phys. Sin. 2008, 57: 6520-6525. DOI: 1000 - 3290/2008/57(10)/6520-06
    [19] Adachi S. Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: key properties for a variety of the 2-4 mum optoelectronic device applications [J]. Journal of Applied Physics. 1987, 61:4869-76. DOI:10.1063/1.338352?

    [1] Dolbec R,E I Khakani M A,Serventi A M,Trudeau M,Saint Jacques R G. Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition [J].Thin Solid Films,2002,419 (1-2):230-236. DOI:10.1016/S0040-6090(02)00769-1
    [2] Aukkaravittayapun S, Wongtida N, Kasecwatin T, Charojrochkul S, Unnanon K, Chindaudom K. Large scale F-doped SnO2 coating on glass by spray pyrolysis [J]. Thin Solid Films,2006,496(1):117-120. DOI:10.1016/j.tsf.2005.08.259
    [3] BATZILL M, KATSIEV K, DIEBOLD U. Surface morphologies of SnO2 (110) [J].Surface Science,2003, 529:295- 311. DOI:10.1016/S0039-6028(03)00357-1
    [4] BATZILL M, KATSIEV K, JAMES M. Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: Structure, composition,and electronic properties [J]. Physical Review B, 2005,72(16):165414-20. DOI:10.1103/PhysRevB.72.165414
    [5] SAHAR Vahdatifar, ABBAS ALI Khodadadi,YADOLLAH Mortazavi. Effects of nano additives on stability of Pt/SnO2 as a sensing material for detection of CO [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2014,191:421-430. DOI:10.1016/j.snb. 2013.10.010
    [6] SIMON D E, SIMON P B. Energetically accessible reconstructions along interstitial rows on the rutile (110) surface [J]. Physical Chemistry and Chemical Physics,2001,3: 1954- 1957. DOI:10.1039/b101804n
    [7] BUSIAKIEWICZ A, KLUSEK Z,ROGALA M, The new high- temperature surface structure on reduced TiO2(001) [J]. Journal of Physics: Condensd Matter, 2010, 22: 395501-6. DOI:10.1088/0953-8984/22/39/395501
    [8] LIU Huixuan. Double-gate SnO2 nanowire electric-double-layer transistors with tunable threshold voltage [J]. APPLIED PHYSICS LETTERS, 2015, 106: 233114. DOI:10.1063/ 1. 4922453
    [9] MATTI A, JASKARI M, TAPIO T R. Band structure and optical parameters of the SnO2 (110) surface [J]. Physical Review B,2001,64:075407- 075414. DOI:10.1103/Phy\ sRevB. 64.075407
    [10] JI Z, Zhao L, HE Z P , ZHOU Q and CHEN C. Transparent p-type conducting indium-doped SnO2 thin films deposited by spray pyrolysis [J]. Mater.Lett. 2006, 60:1387-1389. DOI:10.10 16/j.matlet.2005.11.057
    [11] Tsay C Y, Liang S C.Fabrication of p-type conductivity in SnO2 thin films through Ga doping [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 622:644-650. DOI:10.1016/j.jallcom.2014.10.003
    [12] MAO Qinan, JI Zhenguo and Lina Zhao. Mobility enhancement of p-type SnO2 by In–Ga co-doping [J]. Phys. Status Solidi, 2010, 2: 299-302. DOI:10.1002/pssb.200945545
    [13] LIU Y M, Zhao L Z, Qin K N, Cui Z Y, Li S J. First-principles study of effects of Al doping on electronic structures and optical properties of SnO2 [J]. Materials Research Innovations, 2014, 18: 522-526. DOI: 10.1179/1432891714Z.000000000487
    [14] Segall M D, Philip J D L, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. Journal of Physics Condensed Matter, 2002, 14(11): 2717-2744. PII: S09 53-8984(02)32831-5
    [15] Thangaraju B. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor [J]. Thin Solid Films ,2002, 402(1):71-78. DOI: 10.1016/S0040-6090(01)01667-4
    [16] Yu B,Zhu C and Gan.F. Exciton spectra of SnO2 nanocrystals with surficial dipole layer [J]. Opt. Mater, 1997, 7:15-20. PII:S0925-3467(96)00060-2
    [17] 徐 剑, 黄水平, 王占山, 等. F掺杂SnO2电子结构的模拟计算 [J]. 物理学报, 2007, 56(12): 7195-7200. DOI: 1000-3290/2007/56(12)/7195-06
    [18] Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J. Electronic structure and optical properties of ZnO doped with carbon [J]. Acta Phys. Sin. 2008, 57: 6520-6525. DOI: 1000 - 3290/2008/57(10)/6520-06
    [19] Adachi S. Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: key properties for a variety of the 2-4 mum optoelectronic device applications [J]. Journal of Applied Physics. 1987, 61:4869-76. DOI:10.1063/1.338352?

Catalog

    Article views (1064) PDF downloads (206) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return