Citation: | Simultaneously hydrogen production organic degradation of MoS2/Ag/TiO2 in two chamber photo reactor[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(4): 51-56. |
[1] Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, et al. Photocatalyst releasing hydrogen from water - enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. [J]. Nature 2006;440:295
[2] Nada AA, Hamed HA, Barakat MH, Mohamed NR, Veziroglu TN. Enhancement of photocatalytic hydrogen production rate using photosensitized TiO2/RuO2-MV2+ [J]. Int J Hydrogen Energy 2008;33:3264-9 [3] Cui WQ, Feng LR, Xu CH, Lu SJ, Qiu F. Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film [J]. Catal Commun 2004;5:533-6 [4] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J]. J Catal 2003;216:505-16 [5] Costa D, Arrouvel C, Breysse M, Toulhoat H, Raybaud P. Edge wetting effects of gamma-Al2O3 and anatase-TiO2 supports by MoS2 and CoMoS active phases: A DFT study [J]. J Catal 2007;246:325-43 [6] Kanda S, Akita T, Fujishima M, Tada H. Facile synthesis and catalytic activity of MoS2/TiO2 by a photodeposition-based technique and its oxidized derivative MoO3/TiO2 with a unique photochromism [J]. Journal of Colloid and Interface Science 2011;354:607-10 [7] Hu KH, Hu XG, Xu YF, Sun JD. Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange [J]. J Mater Sci 2010;45:2640-8 [8] Ho WK, Yu JC, Lin J, Yu JG, Li PS. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2 [J]. Langmuir 2004;20:5865-9 [9] Pourabbas B, Jamshidi B. Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol [J]. Chem Eng J 2008;138:55-62 [10] Tsuji I, Kato H, Kobayashi H, Kudo A. Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)(x)Zn2(1-x)S2 solid solutions [J]. J Phys Chem B 2005;109:7323-9 [11] Zhang K, Jing DW, Xing CJ, Guo LJ. Significantly improved photocatalytic hydrogen production activity over Cd1-xZnxS photocatalysts prepared by a novel thermal sulfuration method [J]. Int J Hydrogen Energy 2007;32:4685-91 [12] Zong X, Yan HJ, Wu GP, Ma GJ, Wen FY, Wang L, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation [J]. J Am Chem Soc 2008;130:7176-7 [13] Zhang YJ, Zhang L. Preparation of Ru-loaded CdS/Al-HMS nanocomposites and production of hydrogen by photocatalytic degradation of formic acid [J]. Appl Surf Sci 2009;255:4863-6.DOI:10.1016/j.apsusc.2008.12.019 [14] Fujihara B, Ohno T, Matsumura M. Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles [J]. J Chem Soc Faraday T 1998;94:3705-9 [15] Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system [J]. Nat Mater 2006;5:782-6.DOI:10.1038/nmat1734 [16] Zhu H, Yang B, Xu J, Fu Z, Wen M, Guo T, et al. Construction of Z-scheme type CdS-Au-TiO2 hollow nanorod arrays with enhanced photocatalytic activity [J]. Appl Catal B: Env 2009;90:463-9.DOI:DOI: 10.1016/j.apcatb.2009.04.006 [17] Shen S, Guo L, Chen X, Ren F, Kronawitter CX, Mao SS. Effect of noble metal in CdS/M/TiO2 for photocatalytic degradation of methylene blue under visible light [J]. Int J Green Nanotechnol 2009;1:94-104 [18] Tian YM, Zhao JZ, Fu WY, Liu YH, Zhu YZ, Wang ZC. A facile route to synthesis Of MoS2 nanorods [J]. Mater Lett 2005;59:3452-5 [19] Sasaki Y, Nemoto H, Saito K, Kudo A. Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator [J]. J Phys Chem C 2009;113:17536-42.DOI:10.1021/jp907128k [20] Hou Y, Wen Z, Cui S, Guo X, Chen J. Constructing 2D Porous Graphitic C3N4 Nanosheets/Nitrogen-Doped Graphene/Layered MoS2 Ternary Nanojunction with Enhanced Photoelectrochemical Activity [J]. Adv Mater 2013;25:6291-7.DOI:10.1002/adma.201303116 [21] Hou Y, Laursen AB, Zhang J, Zhang G, Zhu Y, Wang X, et al. Layered nanojunctions for hydrogen-evolution catalysis [J]. Angewandte Chemie 2013;52:3621-5.DOI:10.1002/anie.201210294 [22] Best JP, Dunstan DE. Nanotechnology for photolytic hydrogen production: colloidal anodic oxidation [J]. Int J Hydrogen Energy 2009;34:7562-78.DOI:DOI: 10.1016/j.ijhydene.2009.07.051 [23] Cao YW, Banin U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores [J]. J Am Chem Soc 2000;122:9692-702.DOI:10.1021/ja001386g
[1] Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, et al. Photocatalyst releasing hydrogen from water - enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. [J]. Nature 2006;440:295
[2] Nada AA, Hamed HA, Barakat MH, Mohamed NR, Veziroglu TN. Enhancement of photocatalytic hydrogen production rate using photosensitized TiO2/RuO2-MV2+ [J]. Int J Hydrogen Energy 2008;33:3264-9 [3] Cui WQ, Feng LR, Xu CH, Lu SJ, Qiu F. Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film [J]. Catal Commun 2004;5:533-6 [4] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J]. J Catal 2003;216:505-16 [5] Costa D, Arrouvel C, Breysse M, Toulhoat H, Raybaud P. Edge wetting effects of gamma-Al2O3 and anatase-TiO2 supports by MoS2 and CoMoS active phases: A DFT study [J]. J Catal 2007;246:325-43 [6] Kanda S, Akita T, Fujishima M, Tada H. Facile synthesis and catalytic activity of MoS2/TiO2 by a photodeposition-based technique and its oxidized derivative MoO3/TiO2 with a unique photochromism [J]. Journal of Colloid and Interface Science 2011;354:607-10 [7] Hu KH, Hu XG, Xu YF, Sun JD. Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange [J]. J Mater Sci 2010;45:2640-8 [8] Ho WK, Yu JC, Lin J, Yu JG, Li PS. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2 [J]. Langmuir 2004;20:5865-9 [9] Pourabbas B, Jamshidi B. Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol [J]. Chem Eng J 2008;138:55-62 [10] Tsuji I, Kato H, Kobayashi H, Kudo A. Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)(x)Zn2(1-x)S2 solid solutions [J]. J Phys Chem B 2005;109:7323-9 [11] Zhang K, Jing DW, Xing CJ, Guo LJ. Significantly improved photocatalytic hydrogen production activity over Cd1-xZnxS photocatalysts prepared by a novel thermal sulfuration method [J]. Int J Hydrogen Energy 2007;32:4685-91 [12] Zong X, Yan HJ, Wu GP, Ma GJ, Wen FY, Wang L, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation [J]. J Am Chem Soc 2008;130:7176-7 [13] Zhang YJ, Zhang L. Preparation of Ru-loaded CdS/Al-HMS nanocomposites and production of hydrogen by photocatalytic degradation of formic acid [J]. Appl Surf Sci 2009;255:4863-6.DOI:10.1016/j.apsusc.2008.12.019 [14] Fujihara B, Ohno T, Matsumura M. Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles [J]. J Chem Soc Faraday T 1998;94:3705-9 [15] Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system [J]. Nat Mater 2006;5:782-6.DOI:10.1038/nmat1734 [16] Zhu H, Yang B, Xu J, Fu Z, Wen M, Guo T, et al. Construction of Z-scheme type CdS-Au-TiO2 hollow nanorod arrays with enhanced photocatalytic activity [J]. Appl Catal B: Env 2009;90:463-9.DOI:DOI: 10.1016/j.apcatb.2009.04.006 [17] Shen S, Guo L, Chen X, Ren F, Kronawitter CX, Mao SS. Effect of noble metal in CdS/M/TiO2 for photocatalytic degradation of methylene blue under visible light [J]. Int J Green Nanotechnol 2009;1:94-104 [18] Tian YM, Zhao JZ, Fu WY, Liu YH, Zhu YZ, Wang ZC. A facile route to synthesis Of MoS2 nanorods [J]. Mater Lett 2005;59:3452-5 [19] Sasaki Y, Nemoto H, Saito K, Kudo A. Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator [J]. J Phys Chem C 2009;113:17536-42.DOI:10.1021/jp907128k [20] Hou Y, Wen Z, Cui S, Guo X, Chen J. Constructing 2D Porous Graphitic C3N4 Nanosheets/Nitrogen-Doped Graphene/Layered MoS2 Ternary Nanojunction with Enhanced Photoelectrochemical Activity [J]. Adv Mater 2013;25:6291-7.DOI:10.1002/adma.201303116 [21] Hou Y, Laursen AB, Zhang J, Zhang G, Zhu Y, Wang X, et al. Layered nanojunctions for hydrogen-evolution catalysis [J]. Angewandte Chemie 2013;52:3621-5.DOI:10.1002/anie.201210294 [22] Best JP, Dunstan DE. Nanotechnology for photolytic hydrogen production: colloidal anodic oxidation [J]. Int J Hydrogen Energy 2009;34:7562-78.DOI:DOI: 10.1016/j.ijhydene.2009.07.051 [23] Cao YW, Banin U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores [J]. J Am Chem Soc 2000;122:9692-702.DOI:10.1021/ja001386g |