• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
Research Progress of Functional Connectivity of Autism Spectrum Disorder[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(6): 10-15.
Citation: Research Progress of Functional Connectivity of Autism Spectrum Disorder[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(6): 10-15.

Research Progress of Functional Connectivity of Autism Spectrum Disorder

More Information
  • Received Date: August 12, 2014
  • Revised Date: September 11, 2014
  • The research progress on the functional connectivity of autism spectrum disorder is illustrated. Autism spectrum disorder is an early-onset neurodevelopmental disorder characterized by the communication and social interaction impairments, repetitive and stereotyped behavior and restricted interests. The recent research finds that autistic adolescents and adults show the functional underconnectivity in the brain areas and this lower synchronization of neural activity has a negative correlation with the severity of symptoms in autism spectrum disorder. The functional near-infrared spectroscopy, a newly developed noninvasive optical neural imaging, is used to study autistic children between 8-11 years of age on the resting-state. The results indicate that, compared with typically developing children, autistic children show significantly lower functional connectivity in the bilateral inferior frontal cortices and temporal cortices. This functional underconnectivity has a negative correlation with the severity of language and communication and social interaction deficits of autism spectrum disorder. This study supports the feasibility and convenience of using the functional near-infrared spectroscopy method to assess atypical functional connectivity of cortical activity in autistic children and its potential for early diagnosis on autism spectrum disorder.
  • [1] Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155-168.
    [2] American Psychiatric Association. (2013). The Diagnostic and Statistical Manual of Mental Disorders: DSM 5. bookpointUS.
    [3] Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Jama, 290(3), 337-344.
    [4] Carper, R. A., & Courchesne, E. (2000). Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain, 123(4), 836-844.
    [5] Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain, 127(8), 1811-1821.
    [6] Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2006). Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain, 129(9), 2484-2493.
    [7] Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17(4), 951-961.
    [8] Solomon, M., Ozonoff, S. J., Ursu, S., Ravizza, S., Cummings, N., Ly, S., & Carter, C. S. (2009). The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia, 47(12), 2515-2526.
    [9] Villalobos, M. E., Mizuno, A., Dahl, B. C., Kemmotsu, N., & Müller, R. A. (2005). Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage, 25(3), 916-925.
    [10] Damarla, S. R., Keller, T. A., Kana, R. K., Cherkassky, V. L., Williams, D. L., Minshew, N. J., & Just, M. A. (2010). Cortical underconnectivity coupled with preserved visuospatial cognition in autism: evidence from an fMRI study of an embedded figures task. Autism Research, 3(5), 273-279.
    [11] Koshino, H., Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2008). fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18(2), 289-300.
    [12] Lombardo, M. V., Chakrabarti, B., Bullmore, E. T., Sadek, S. A., Pasco, G., Wheelwright, S. J., ... & Baron-Cohen, S. (2010). Atypical neural self-representation in autism. Brain, 133(2), 611-624.
    [13] Schipul, S. E., Williams, D. L., Keller, T. A., Minshew, N. J., & Just, M. A. (2012). Distinctive neural processes during learning in autism. Cerebral Cortex, 22(4), 937-950.
    [14] Turner, K. C., Frost, L., Linsenbardt, D., McIlroy, J. R., & Muller, R. A. (2006). Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism. Behav Brain Funct, 2, 34.
    [15] Kana, R. K., Keller, T. A., Minshew, N. J., & Just, M. A. (2007). Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks. Biological psychiatry, 62(3), 198-206.
    [16] Agam, Y., Joseph, R. M., Barton, J. J., & Manoach, D. S. (2010). Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders. Neuroimage, 52(1), 336-347.
    [17] Kleinhans, N. M., Richards, T., Sterling, L., Stegbauer, K. C., Mahurin, R., Johnson, L. C., ... & Aylward, E. (2008). Abnormal functional connectivity in autism spectrum disorders during face processing. Brain, 131(4), 1000-1012.
    [18] Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo, B., & Pekar, J. J. (2009). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain, awp088.
    [19] Monk, C. S., Weng, S. J., Wiggins, J. L., Kurapati, N., Louro, H. M., Carrasco, M., ... & Lord, C. (2010). Neural circuitry of emotional face processing in autism spectrum disorders. Journal of psychiatry & neuroscience: JPN, 35(2), 105.
    [20] Mizuno, A., Liu, Y., Williams, D. L., Keller, T. A., Minshew, N. J., & Just, M. A. (2011). The neural basis of deictic shifting in linguistic perspective-taking in high-functioning autism. Brain, 134(8), 2422-2435.
    [21] Baron-Cohen, S. (1995). Mindblindness: An essay on autism and theory of mind, 1995. Cambridge, The, 230.
    [22] Mason, R. A., Williams, D. L., Kana, R. K., Minshew, N., & Just, M. A. (2008). Theory of mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia, 46(1), 269-280.
    [23] Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2009). Atypical frontal-posterior synchronization of Theory of Mind regions in autism during mental state attribution. Social Neuroscience, 4(2), 135-152.
    [24] Cherkassky, V. L., Kana, R. K., Keller, T. A., & Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism.Neuroreport, 17, 1687-1690.
    [25] Tyszka, J. M., Kennedy, D. P., Paul, L. K., & Adolphs, R. (2013). Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism. Cerebral Cortex, bht040.
    [26] Mueller, S., Keeser, D., Samson, A. C., Kirsch, V., Blautzik, J., Grothe, M., ... & Meindl, T. (2013). Convergent findings of altered functional and structural brain connectivity in individuals with high functioning autism: a multimodal MRI Study. PloS one, 8(6), e67329.
    [27] Ding, J. R., Liao, W., Zhang, Z., Mantini, D., Xu, Q., Wu, G. R., ... & Chen, H. (2011). Topological fractionation of resting-state networks. PLoS One,6(10), e26596.
    [28] Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization of the brain is altered in autism. Neuroimage, 39(4), 1877-1885.
    [29] Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., ... & Pearlson, G. D. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage, 53(1), 247-256.
    [30] Weng, S. J., Wiggins, J. L., Peltier, S. J., Carrasco, M., Risi, S., Lord, C., & Monk, C. S. (2010). Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain research, 1313, 202-214.
    [31] von dem Hagen, E. A., Stoyanova, R. S., Baron-Cohen, S., & Calder, A. J. (2013). Reduced functional connectivity within and between ‘social’resting state networks in autism spectrum conditions. Social cognitive and affective neuroscience, 8(6), 694-701.
    [32] Wiggins, J. L., Peltier, S. J., Ashinoff, S., Weng, S. J., Carrasco, M., Welsh, R. C., ... & Monk, C. S. (2011). Using a self-organizing map algorithm to detect age-related changes in functional connectivity during rest in autism spectrum disorders. Brain research, 1380, 187-197.
    [33] Gotts, S. J., Simmons, W. K., Milbury, L. A., Wallace, G. L., Cox, R. W., & Martin, A. (2012). Fractionation of social brain circuits in autism spectrum disorders. Brain, 135(9), 2711-2725.
    [34] Ebisch, S. J., Gallese, V., Willems, R. M., Mantini, D., Groen, W. B., Romani, G. L., ... & Bekkering, H. (2011). Altered intrinsic functional connectivity of anterior and posterior insula regions in high‐functioning participants with autism spectrum disorder. Human brain mapping, 32(7), 1013-1028.
    [35] Alaerts, K., Woolley, D. G., Steyaert, J., Di Martino, A., Swinnen, S. P., & Wenderoth, N. (2013). Underconnectivity of the superior temporal sulcus predicts emotion recognition deficits in autism. Social cognitive and affective neuroscience, nst156.
    [36] Abrams, D. A., Lynch, C. J., Cheng, K. M., Phillips, J., Supekar, K., Ryali, S., ... & Menon, V. (2013). Underconnectivity between voice-selective cortex and reward circuitry in children with autism. Proceedings of the National Academy of Sciences, 110(29), 12060-12065.
    [37] Verly, M., Verhoeven, J., Zink, I., Mantini, D., Peeters, R., Deprez, S., ... & Sunaert, S. (2014). Altered functional connectivity of the language network in ASD: role of classical language areas and cerebellum. NeuroImage: Clinical.
    [38] Anderson, J. S., Nielsen, J. A., Froehlich, A. L., DuBray, M. B., Druzgal, T. J., Cariello, A. N., ... & Lainhart, J. E. (2011). Functional connectivity magnetic resonance imaging classification of autism. Brain, 134(12), 3742-3754.
    [39] Uddin, L. Q., Supekar, K., & Menon, V. (2013). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Frontiers in human neuroscience, 7.
    [40] Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., & Courchesne, E. (2011). Disrupted neural synchronization in toddlers with autism. Neuron, 70(6), 1218-1225.
    [41] Duan, L., Zhang, Y.-J., & Zhu, C.-Z. (2012). Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study. Neuroimage, 60(4), 2008-2018.
    [42] Lu, C.-M., Zhang, Y.-J., Biswal, B. B., Zang, Y.-F., Peng, D.-L., & Zhu, C.-Z. (2010). Use of fNIRS to assess resting state functional connectivity. Journal of neuroscience methods, 186(2), 242-249.
    [43] Zhang, H., Duan, L., Zhang, Y. J., Lu, C. M., Liu, H., & Zhu, C. Z. (2011). Test–retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy. Neuroimage, 55(2), 607-615.
    [44] Kumar, G., Eggebrecht, A. T., Culver, J. P., & Lee, J. M. (2013, February). Bedside Monitoring Of Resting State Functional Connectivity Networks In Acute Ischemic Stroke Patients Using Diffuse Optical Tomography. InSTROKE (Vol. 44, No. 2). 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA: LIPPINCOTT WILLIAMS & WILKINS.
    [45] Imai, M., Watanabe, H., Yasui, K., Kimura, Y., Shitara, Y., Tsuchida, S., ... & Taga, G. (2014). Functional connectivity of the cortex of term and preterm infants and infants with Down's syndrome. NeuroImage, 85, 272-278.
    [46] Homae, F., Watanabe, H., Otobe, T., Nakano, T., Go, T., Konishi, Y., & Taga, G. (2010). Development of global cortical networks in early infancy.The Journal of neuroscience, 30(14), 4877-4882.
    [47] Li, J., & Qiu, L. (2014). Temporal correlation of spontaneous hemodynamic activity in language areas measured with functional near-infrared spectroscopy. Biomedical optics express, 5(2), 587-595.
    [48] Zhu, H., Fan, Y., Guo, H., Huang, D., & He, S. (2014). Reduced interhemispheric functional connectivity of children with autism spectrum disorder: evidence from functional near infrared spectroscopy studies.Biomedical optics express, 5(4), 1262-1274.
    [49] Lu, C. M., Zhang, Y. J., Biswal, B. B., Zang, Y. F., Peng, D. L., & Zhu, C. Z. (2010). Use of fNIRS to assess resting state functional connectivity. Journal of neuroscience methods, 186(2), 242-249.
    [50] Mesquita, R. C., Franceschini, M. A., & Boas, D. A. (2010). Resting state functional connectivity of the whole head with near-infrared spectroscopy.Biomedical optics express, 1(1), 324-336.
    [51] Vanderwert, R. E., & Nelson, C. A. (2014). The use of near-infrared spectroscopy in the study of typical and atypical development. Neuroimage,85, 264-271.
    [52] White, B. R., Liao, S. M., Ferradal, S. L., Inder, T. E., & Culver, J. P. (2012). Bedside optical imaging of occipital resting-state functional connectivity in neonates. Neuroimage, 59(3), 2529-2538.

    [1] Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155-168.
    [2] American Psychiatric Association. (2013). The Diagnostic and Statistical Manual of Mental Disorders: DSM 5. bookpointUS.
    [3] Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. Jama, 290(3), 337-344.
    [4] Carper, R. A., & Courchesne, E. (2000). Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain, 123(4), 836-844.
    [5] Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain, 127(8), 1811-1821.
    [6] Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2006). Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain, 129(9), 2484-2493.
    [7] Just, M. A., Cherkassky, V. L., Keller, T. A., Kana, R. K., & Minshew, N. J. (2007). Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17(4), 951-961.
    [8] Solomon, M., Ozonoff, S. J., Ursu, S., Ravizza, S., Cummings, N., Ly, S., & Carter, C. S. (2009). The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia, 47(12), 2515-2526.
    [9] Villalobos, M. E., Mizuno, A., Dahl, B. C., Kemmotsu, N., & Müller, R. A. (2005). Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage, 25(3), 916-925.
    [10] Damarla, S. R., Keller, T. A., Kana, R. K., Cherkassky, V. L., Williams, D. L., Minshew, N. J., & Just, M. A. (2010). Cortical underconnectivity coupled with preserved visuospatial cognition in autism: evidence from an fMRI study of an embedded figures task. Autism Research, 3(5), 273-279.
    [11] Koshino, H., Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2008). fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18(2), 289-300.
    [12] Lombardo, M. V., Chakrabarti, B., Bullmore, E. T., Sadek, S. A., Pasco, G., Wheelwright, S. J., ... & Baron-Cohen, S. (2010). Atypical neural self-representation in autism. Brain, 133(2), 611-624.
    [13] Schipul, S. E., Williams, D. L., Keller, T. A., Minshew, N. J., & Just, M. A. (2012). Distinctive neural processes during learning in autism. Cerebral Cortex, 22(4), 937-950.
    [14] Turner, K. C., Frost, L., Linsenbardt, D., McIlroy, J. R., & Muller, R. A. (2006). Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism. Behav Brain Funct, 2, 34.
    [15] Kana, R. K., Keller, T. A., Minshew, N. J., & Just, M. A. (2007). Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks. Biological psychiatry, 62(3), 198-206.
    [16] Agam, Y., Joseph, R. M., Barton, J. J., & Manoach, D. S. (2010). Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders. Neuroimage, 52(1), 336-347.
    [17] Kleinhans, N. M., Richards, T., Sterling, L., Stegbauer, K. C., Mahurin, R., Johnson, L. C., ... & Aylward, E. (2008). Abnormal functional connectivity in autism spectrum disorders during face processing. Brain, 131(4), 1000-1012.
    [18] Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo, B., & Pekar, J. J. (2009). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain, awp088.
    [19] Monk, C. S., Weng, S. J., Wiggins, J. L., Kurapati, N., Louro, H. M., Carrasco, M., ... & Lord, C. (2010). Neural circuitry of emotional face processing in autism spectrum disorders. Journal of psychiatry & neuroscience: JPN, 35(2), 105.
    [20] Mizuno, A., Liu, Y., Williams, D. L., Keller, T. A., Minshew, N. J., & Just, M. A. (2011). The neural basis of deictic shifting in linguistic perspective-taking in high-functioning autism. Brain, 134(8), 2422-2435.
    [21] Baron-Cohen, S. (1995). Mindblindness: An essay on autism and theory of mind, 1995. Cambridge, The, 230.
    [22] Mason, R. A., Williams, D. L., Kana, R. K., Minshew, N., & Just, M. A. (2008). Theory of mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia, 46(1), 269-280.
    [23] Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2009). Atypical frontal-posterior synchronization of Theory of Mind regions in autism during mental state attribution. Social Neuroscience, 4(2), 135-152.
    [24] Cherkassky, V. L., Kana, R. K., Keller, T. A., & Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism.Neuroreport, 17, 1687-1690.
    [25] Tyszka, J. M., Kennedy, D. P., Paul, L. K., & Adolphs, R. (2013). Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism. Cerebral Cortex, bht040.
    [26] Mueller, S., Keeser, D., Samson, A. C., Kirsch, V., Blautzik, J., Grothe, M., ... & Meindl, T. (2013). Convergent findings of altered functional and structural brain connectivity in individuals with high functioning autism: a multimodal MRI Study. PloS one, 8(6), e67329.
    [27] Ding, J. R., Liao, W., Zhang, Z., Mantini, D., Xu, Q., Wu, G. R., ... & Chen, H. (2011). Topological fractionation of resting-state networks. PLoS One,6(10), e26596.
    [28] Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization of the brain is altered in autism. Neuroimage, 39(4), 1877-1885.
    [29] Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., ... & Pearlson, G. D. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage, 53(1), 247-256.
    [30] Weng, S. J., Wiggins, J. L., Peltier, S. J., Carrasco, M., Risi, S., Lord, C., & Monk, C. S. (2010). Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain research, 1313, 202-214.
    [31] von dem Hagen, E. A., Stoyanova, R. S., Baron-Cohen, S., & Calder, A. J. (2013). Reduced functional connectivity within and between ‘social’resting state networks in autism spectrum conditions. Social cognitive and affective neuroscience, 8(6), 694-701.
    [32] Wiggins, J. L., Peltier, S. J., Ashinoff, S., Weng, S. J., Carrasco, M., Welsh, R. C., ... & Monk, C. S. (2011). Using a self-organizing map algorithm to detect age-related changes in functional connectivity during rest in autism spectrum disorders. Brain research, 1380, 187-197.
    [33] Gotts, S. J., Simmons, W. K., Milbury, L. A., Wallace, G. L., Cox, R. W., & Martin, A. (2012). Fractionation of social brain circuits in autism spectrum disorders. Brain, 135(9), 2711-2725.
    [34] Ebisch, S. J., Gallese, V., Willems, R. M., Mantini, D., Groen, W. B., Romani, G. L., ... & Bekkering, H. (2011). Altered intrinsic functional connectivity of anterior and posterior insula regions in high‐functioning participants with autism spectrum disorder. Human brain mapping, 32(7), 1013-1028.
    [35] Alaerts, K., Woolley, D. G., Steyaert, J., Di Martino, A., Swinnen, S. P., & Wenderoth, N. (2013). Underconnectivity of the superior temporal sulcus predicts emotion recognition deficits in autism. Social cognitive and affective neuroscience, nst156.
    [36] Abrams, D. A., Lynch, C. J., Cheng, K. M., Phillips, J., Supekar, K., Ryali, S., ... & Menon, V. (2013). Underconnectivity between voice-selective cortex and reward circuitry in children with autism. Proceedings of the National Academy of Sciences, 110(29), 12060-12065.
    [37] Verly, M., Verhoeven, J., Zink, I., Mantini, D., Peeters, R., Deprez, S., ... & Sunaert, S. (2014). Altered functional connectivity of the language network in ASD: role of classical language areas and cerebellum. NeuroImage: Clinical.
    [38] Anderson, J. S., Nielsen, J. A., Froehlich, A. L., DuBray, M. B., Druzgal, T. J., Cariello, A. N., ... & Lainhart, J. E. (2011). Functional connectivity magnetic resonance imaging classification of autism. Brain, 134(12), 3742-3754.
    [39] Uddin, L. Q., Supekar, K., & Menon, V. (2013). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Frontiers in human neuroscience, 7.
    [40] Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., & Courchesne, E. (2011). Disrupted neural synchronization in toddlers with autism. Neuron, 70(6), 1218-1225.
    [41] Duan, L., Zhang, Y.-J., & Zhu, C.-Z. (2012). Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study. Neuroimage, 60(4), 2008-2018.
    [42] Lu, C.-M., Zhang, Y.-J., Biswal, B. B., Zang, Y.-F., Peng, D.-L., & Zhu, C.-Z. (2010). Use of fNIRS to assess resting state functional connectivity. Journal of neuroscience methods, 186(2), 242-249.
    [43] Zhang, H., Duan, L., Zhang, Y. J., Lu, C. M., Liu, H., & Zhu, C. Z. (2011). Test–retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy. Neuroimage, 55(2), 607-615.
    [44] Kumar, G., Eggebrecht, A. T., Culver, J. P., & Lee, J. M. (2013, February). Bedside Monitoring Of Resting State Functional Connectivity Networks In Acute Ischemic Stroke Patients Using Diffuse Optical Tomography. InSTROKE (Vol. 44, No. 2). 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA: LIPPINCOTT WILLIAMS & WILKINS.
    [45] Imai, M., Watanabe, H., Yasui, K., Kimura, Y., Shitara, Y., Tsuchida, S., ... & Taga, G. (2014). Functional connectivity of the cortex of term and preterm infants and infants with Down's syndrome. NeuroImage, 85, 272-278.
    [46] Homae, F., Watanabe, H., Otobe, T., Nakano, T., Go, T., Konishi, Y., & Taga, G. (2010). Development of global cortical networks in early infancy.The Journal of neuroscience, 30(14), 4877-4882.
    [47] Li, J., & Qiu, L. (2014). Temporal correlation of spontaneous hemodynamic activity in language areas measured with functional near-infrared spectroscopy. Biomedical optics express, 5(2), 587-595.
    [48] Zhu, H., Fan, Y., Guo, H., Huang, D., & He, S. (2014). Reduced interhemispheric functional connectivity of children with autism spectrum disorder: evidence from functional near infrared spectroscopy studies.Biomedical optics express, 5(4), 1262-1274.
    [49] Lu, C. M., Zhang, Y. J., Biswal, B. B., Zang, Y. F., Peng, D. L., & Zhu, C. Z. (2010). Use of fNIRS to assess resting state functional connectivity. Journal of neuroscience methods, 186(2), 242-249.
    [50] Mesquita, R. C., Franceschini, M. A., & Boas, D. A. (2010). Resting state functional connectivity of the whole head with near-infrared spectroscopy.Biomedical optics express, 1(1), 324-336.
    [51] Vanderwert, R. E., & Nelson, C. A. (2014). The use of near-infrared spectroscopy in the study of typical and atypical development. Neuroimage,85, 264-271.
    [52] White, B. R., Liao, S. M., Ferradal, S. L., Inder, T. E., & Culver, J. P. (2012). Bedside optical imaging of occipital resting-state functional connectivity in neonates. Neuroimage, 59(3), 2529-2538.

Catalog

    Article views (973) PDF downloads (583) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return