• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
TENG Ying, LI Jiajie, LIU Ying, CHEN Yiqi, WANG Pengfei, GAO Tian, KONG Ji, LI Guotao. Research Progress in Offshore CO2 Geological Sequestration: Suitability Evaluation and Source-Sink Matching[J]. Journal of South China Normal University (Natural Science Edition), 2025, 57(1): 100-112. DOI: 10.6054/j.jscnun.2025011
Citation: TENG Ying, LI Jiajie, LIU Ying, CHEN Yiqi, WANG Pengfei, GAO Tian, KONG Ji, LI Guotao. Research Progress in Offshore CO2 Geological Sequestration: Suitability Evaluation and Source-Sink Matching[J]. Journal of South China Normal University (Natural Science Edition), 2025, 57(1): 100-112. DOI: 10.6054/j.jscnun.2025011

Research Progress in Offshore CO2 Geological Sequestration: Suitability Evaluation and Source-Sink Matching

More Information
  • Received Date: October 17, 2024
  • Current advancements in the suitability assessment of offshore CO2 geological sequestration and source-sink matching research are comprehensively reviewed. An analysis of potential reservoirs and geological conditions for offshore CO2 sequestration is presented, focusing on the suitability of major sedimentary basins in China's offshore areas and the methods for calculating their storage capacity. The fundamental principles of source-sink matching are introduced, along with a summary of relevant domestic and international case studies and matching schemes. It is emphasized that future research should concentrate on enhancing geological data and evaluation systems, optimizing cross-regional carbon source and sink matching strategies, and promoting large-scale applications of offshore sequestration technologies through policy support and economic incentives, thus providing the theoretical basis and technical support necessary for achieving carbon peaking and carbon neutrality goals.

  • [1]
    牛振川, 王鹏, 吴书刚, 等. 大气14CO2观测: 碳排放评估的新方法[J]. 中国科学院院刊, 2023, 38(12): 1866-1873.

    NIU Z C, WANG P, WU S G, et al. Atmospheric 14CO2 observation: a novel method to evaluate carbon emissions[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(12): 1866-1873.
    [2]
    连威, 王能昊, 李军, 等. CO2地质封存泄漏机理与井筒完整性研究进展[J]. 华南师范大学学报(自然科学版), 2024, 56(5): 1-15.

    LIAN W, WANG N H, LI J, et al. Research progress on CO2 geological storage leakage mechanism and Wellbore integrity[J]. Journal of South China Normal University(Natural Science Edition), 2024, 56(5): 1-15.
    [3]
    国家统计局. 中国统计年鉴2023[M]. 北京: 中国统计出版社, 2023.
    [4]
    阳平坚, 彭栓, 王静, 等. 碳捕集、利用和封存(CCUS)技术发展现状及应用展望[J]. 中国环境科学, 2024, 44(1): 404-416.

    YANG P J, PENG S, WANG J, et al. Carbon capture, utilization and storage (CCUS) technology development status and application prospects[J]. China Environmental Science, 2024, 44(1): 404-416.
    [5]
    李春峰, 赵学婷, 段威, 等. 中国海域盆地CO2地质封存选址方案与构造力学分析[J]. 力学学报, 2023, 55(3): 719-731.

    LI C F, ZHAO X T, DUAN W, et al. Strategic and geodynamic analyses of geo-sequestration of CO2 in China offshore sedimentary basind[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 719-731.
    [6]
    METZ B, DAVIDSON O, de CONINCK H, et al. IPCC special report on carbon dioxide capture and storage[M]. New York: Cambridge University Press, 2005.
    [7]
    包琦, 叶航, 刘琦, 等. 不同地质体中CO2封存研究进展[J]. 低碳化学与化工, 2024, 49(3): 87-96.

    BAO Q, YE H, LIU Q, et al. Research progress on CO2 storage in different geological formations[J]. Low-Carbon Chemistry and Chemical Engineering, 2024, 49(3): 87-96.
    [8]
    WANG P F, LI Y, SUN N, et al. Hydrate technologies for CO2 capture and sequestration: status and perspectives[J]. Chemical Reviews, 2024, 124(18): 10363-10385. doi: 10.1021/acs.chemrev.2c00777
    [9]
    赵金洲, 郑建超, 任岚, 等. 海洋CO2地质封存研究进展与发展趋势[J]. 大庆石油地质与开发, 2024, 43(1): 1-13.

    ZHAO J Z, ZHENG J C, REN L, et al. Research progress and development trend of marine CO2 geological storage[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(1): 1-13.
    [10]
    张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京: 全球碳捕集与封存研究院, 2023.
    [11]
    BACHUS, BONIJOLY D, BRADSHAW J, et al. Phase Ⅱ, final report from the task force for review and identification of standards for CO2 storage capacity estimation[C]//Proceedings of the carbon sequestration leadership forum. [S. l. ]: Carbon Sequestration Leadership Forum, 2007.
    [12]
    KALDI J, GIBSON-POOLE C. Storage capacity estimation, site selection and characterisation for CO2 storage projects[R]. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra, CO2CRC, RPT08-1001, 2008.
    [13]
    BENSON S M, MYER L R, OLDENBURG C M, et al. GEO-SEQ best practices manual. Geologic carbon dioxide sequestration: site evaluation to implementation[R]. Berkeley: Ernest Orlando Lawrence Berkeley National Laboratory, 2004.
    [14]
    [15]
    CHADWICK A, ARTS R, BERNSTONE C, et al. Best practice for the storage of CO2 in saline aquifers-observations and guidelines from the SACS and CO2STORE projects[R]. The United Kingdom: British Geological Survey, 2008.
    [16]
    CARPENTER M, KVIEN K, AARNES J. The CO2QUALSTORE guideline for selection, characterization and qualification of sites and projects for geological storage of CO2[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 942-951.
    [17]
    BACHU S, ADAMS J J. Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Convers Manage, 2003, 44(20): 3151-3175.
    [18]
    GIBSON-POOLE C, SVENDSEN L, UNDERSCHULTZ J, et al. Site characterisation of a basin-scale CO2 geological storage system: Gippsland Basin, southeast Australia[J]. Environmental Geology, 2008, 54: 1583-1606.
    [19]
    GIBSON-POOLE C M, ROOT R, LANG S C, et al. Conducting comprehensive analyses of potential sites for geological CO2 storage[J]. Greenhouse Gas Control Technologies, 2005(1): 673-681.
    [20]
    李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 2006(6): 963-968.

    LI X C, LIU Y F, BAI B, et al. Ranking and screening og CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006(6): 963-968.
    [21]
    沈平平, 廖新维, 刘庆杰. 二氧化碳在油藏中埋存量计算方法[J]. 石油勘探与开发, 2009, 36(2): 216-220. doi: 10.3321/j.issn:1000-0747.2009.02.012

    SHEN P P, LIAO X W, LIU Q J. Methodology for estimation of CO2 storage capacity in reservoirs[J]. Petroleum Exploration and Development, 2009, 36(2): 216-220. doi: 10.3321/j.issn:1000-0747.2009.02.012
    [22]
    桑树勋, 刘世奇, 朱前林, 等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报, 2023, 48(7): 2700-2716.

    SANG S X, LIU S Q, ZHU Q L, et al. Research progress on technical basis of synergy between CO2 geological-storage potential and energy resources[J]. Journal of China Coal Society, 2023, 48(7): 2700-2716.
    [23]
    韩燚, 梁荣柱. 深部盐水层二氧化碳储量的计算新方法[J]. 西部探矿工程, 2011, 23(6): 112-115. doi: 10.3969/j.issn.1004-5716.2011.06.039

    HAN Y, LIANG R Z. The new means of estimation of CO2 storage capacity in deep saline aquifer[J]. West-China Exploration Engineering, 2011, 23(6): 112-115. doi: 10.3969/j.issn.1004-5716.2011.06.039
    [24]
    霍传林. 我国近海二氧化碳海底封存潜力评估和封存区域研究[D]; 大连: 大连海事大学, 2014.

    HUO C L. Study on the potential evaluation and the storage areas of the carbon dioxide seabed storage in offshore China[D]. Dalian: Dalian Maritime University, 2014.
    [25]
    李林涛, 于航, 李彦尊, 等. 珠江口盆地CO2地质封存适宜性GCA评价[J]. 中国海上油气, 2023, 35(1): 170-178.

    LI L T, YU H, LI Y Z, et al. GCA evaluation of the suitability of CO2 geological storage in the Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2023, 35(1): 170-178.
    [26]
    可行, 陈建文, 龚建明, 等. 珠江口盆地二氧化碳地质封存条件及源汇匹配性分析[J]. 海洋地质与第四纪地质, 2023, 43(2): 55-65.

    KE X, CHEN J W, GONG J M, et al. Assessment on geological condition for carbon dioxide sequestration and source-sink matching in the Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 55-65.
    [27]
    可行, 陈建文, 龚建明, 等. 东海陆架盆地CO2地质封存适宜性评价[J]. 海洋地质前沿, 2023, 39(7): 1-12.

    KE X, CHEN J W, GONG J M, et al. Suitability evaluation of CO2 sequestration in the East China Sea Shelf Basin[J]. Marine Geology Frontiers, 2023, 39(7): 1-12.
    [28]
    朱前林, 陈东宝, 龚懿杰, 等. 江苏省及近海区域CO2地质封存储层条件分析[J]. 高校地质学报, 2023, 29(1): 25-36.

    ZHU Q L, CHEN D B, GONG Y J, et al. Analysis of CO2 geological storage condition in Jiangsu Province and offshore area[J]. Geological Journal of China Universities, 2023, 29(1): 25-36.
    [29]
    张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6): 70-80.

    ZHANG X, LI Y, MA Q, et al. Development of carbon capture, utilization and storage technology in China[J]. Strategic Study of CAE, 2021, 23(6): 70-80.
    [30]
    CHEN W, HUANG L, XIANG X, et al. GIS based CCS source-sink matching models and decision support system[J]. Energy Procedia, 2011, 4: 5999-6006. doi: 10.1016/j.egypro.2011.02.603
    [31]
    TAN R R, AVISO K B, BANDYOPADHYAY S, et al. Optimal source-sink matching in carbon capture and storage systems with time, injection rate, and capacity constraints[J]. Environmental Progress & Sustainable Energy, 2013, 32(2): 411-416.
    [32]
    LEE J Y, TAN R R, CHEN C L. A unified model for the deployment of carbon capture and storage[J]. Applied Energy, 2014, 121: 140-148. doi: 10.1016/j.apenergy.2014.01.080
    [33]
    TAPIA J F D. Optimal multi-period source-sink matching in carbon capture, utilization and storage (CCUS) system under eutrophic environment[J]. Journal of Cleaner Production, 2024, 467: 142967. doi: 10.1016/j.jclepro.2024.142967
    [34]
    LI J, LI P, LI Y, et al. Technology system of offshore carbon capture, utilization, and storage[J]. Strategic Study of Chinese Academy of Engineering, 2023, 25(2): 173-186.
    [35]
    JCCS Japan CCS Co., Ltd. Tomakomai CCS demonstration center online website[EB/OL]. https://www.japanccs.com/en/tour01 .
    [36]
    许晓艺, 李琦, 谭永胜, 等. 日本苫小牧CO2海底地质封存监测技术分析及其启示[J]. 高校地质学报, 2023, 29(1): 13-24.

    XU X Y, LI Q, TAN Y S, et al. Analysis of monitoring technologies of offshore CO2 geological storage in Japan's tomahawk and its enlightenment[J]. Geological Journal of China Universities, 2023, 29(1): 13-24.
    [37]
    LARSEN M, BECH N, BIDSTRUP T, et al. Kalundborg case study, a feasibility study of CO2 storage in onshore saline aquifers[R]. CO2STORE GEUS Report, 2007.
    [38]
    王众, 骆毓燕, 匡建超, 等. 我国大型燃煤电厂CCS源汇匹配与优化研究[J]. 工业工程与管理, 2016, 21(6): 75-83.

    WANG Z, LUO Y Y, KUANG J C, et al. Source-sink matching and optimization of CCS for large coal-fired power plants in China[J]. Industrial Engineering and Management, 2016, 21(6): 75-83.
    [39]
    周凡. 我国燃煤电厂与沉积盆地CO2咸水层封存的源汇匹配研究[D]. 武汉: 湖北工业大学, 2024.

    ZHOU F. Research on source-sink matching between coal-fired power plants and CO2 saline aquifer storage in sedimentary basins in China[D]. Wuhan: Hubei University of Technology, 2024.
    [40]
    王建军. 华北地区燃煤电厂CCUS源汇匹配管网优化设计[D]. 成都: 成都理工大学, 2021.

    WANG J J. Optimal design of CCUS source sink matching pipe network for coal fired power plants in North China[D]. Chengdu: Chengdu University of Technology, 2021.
    [41]
    陈文会, 鲁玺. 碳中和目标下中国燃煤电厂CCUS集群部署优化研究[J]. 气候变化研究进展, 2022, 18(3): 261-271.

    CHEN W H, LU X. The optimal layout of CCUS clusters in China's coal-fired power plants towards carbon neutr-ality[J]. Climate Change Research, 2022, 18(3): 261-271.
    [42]
    方辉煌, 桑树勋, 张平松, 等. 淮南煤田各类型地质体CCS源汇潜力评估及其匹配性[J]. 煤炭学报, 2024, 49(8): 3580-3592.

    FANG H H, SANG S X, ZHANG P S, et al. Evaluation and matching of CCS source and sink potential of various geologic bodies in Huainan Coalfield[J]. Journal of China Cola Society, 2024, 49(8): 3580-3592.
    [43]
    魏宁, 刘胜男, 李小春. 中国煤化工行业开展CO2强化深部咸水开采技术的潜力评价[J]. 气候变化研究进展, 2021, 17(1): 70-78.

    WEI N, LIU S N, LI X C. Evaluation on potential of CO2 enhanced water recovery deployment in China's coal chemical industry[J]. Climate Change Research, 2021, 17(1): 70-78.
    [44]
    聂超飞, 陈文会, 彭世垚, 等. 我国现代煤化工产业清洁高效利用战略研究[J]. 资源与产业, 2024, 26(3): 6-20.

    NIE C F, CHEN W H, PENG S Y, et al. Strategy of clean and efficient use of China's modern coal chemical industry[J]. Resource and Industry, 2024, 26(3): 6-20.
    [45]
    李姜辉, 李鹏春, 李彦尊, 等. 离岸碳捕集利用与封存技术体系研究[J]. 中国工程科学, 2023, 25(2): 173-186.

    LI J H, LI P C, LI Y Z, et al. Technology system of offshore carbon capture, utilization, and storage[J]. Strategic Study of CAE, 2023, 25(2): 173-186.
    [46]
    罗海中, 吴大卫, 范永春, 等. 碳中和背景下CCUS技术发展及广东离岸封存潜力评估[J]. 南方能源建设, 2023, 10(6): 1-13.

    LUO H Z, WU D W, FAN Y C, et al. Development of CCUS technology in the context of carbon neutrality and assessment of the potential for offshore storage in Guangdong Province[J]. Southern Energy Construction, 2023, 10(6): 1-13.
    [47]
    季盼杰. 浙江省CO2海上封存源汇匹配模型与经济性评价[D]. 杭州: 浙江大学, 2023.

    JI P J. Source-sink matching model and economic evaluation of CO2 offshore storage in Zheiiang Province[D]. Hangzhou: Zhejiang University, 2023.
  • Cited by

    Periodical cited type(2)

    1. 李宪,达举霞,章欢. 四阶两点边值问题n个对称正解的存在性. 华南师范大学学报(自然科学版). 2024(01): 123-127 .
    2. 达举霞. 四阶两点边值问题3个对称正解的存在性. 华南师范大学学报(自然科学版). 2021(01): 90-93 .

    Other cited types(0)

Catalog

    Article views (54) PDF downloads (18) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return