• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
TIAN Ganghua, WANG Haizhu, SUN Lianhe, WANG Bin. Mechanical Properties and Failure Behavior of Shale under the Influence of CO2[J]. Journal of South China Normal University (Natural Science Edition), 2025, 57(1): 92-99. DOI: 10.6054/j.jscnun.2025010
Citation: TIAN Ganghua, WANG Haizhu, SUN Lianhe, WANG Bin. Mechanical Properties and Failure Behavior of Shale under the Influence of CO2[J]. Journal of South China Normal University (Natural Science Edition), 2025, 57(1): 92-99. DOI: 10.6054/j.jscnun.2025010

Mechanical Properties and Failure Behavior of Shale under the Influence of CO2

More Information
  • Received Date: October 21, 2024
  • To clarify the evolution law of shale mechanical properties under the action of CO2, CO2-water-rock reaction experiments and uniaxial compression experiments were carried out on the shale of Fengcheng Formation in the Junggar Basin, and stress-strain curves, mechanical strengths, and failure characteristics were obtained. The results demonstrated that the stress-strain curve has four stages: compaction, elastic deformation, plastic yielding, and post-peak damage. As CO2 soaking time increased, the compaction stage was prolonged, accompanied by a change in the post-peak characteristic from a "steep" drop to a "step-like" fall. The compressive strength and elastic modulus decreased by CO2 dissolution and adsorption. The shift in failure mode from brittle to plastic resulted in increased fracture complexity. The reduction in shale compressive strength helped reduce fracture initiation pressure, form complex fractures, and increase fracturing efficiency. However, it also increased the risk of CO2 leakage and affected the long-term stability of CO2 sequestration. Research results can provide theoretical reference for the design of the pre-CO2 fracturing and the evaluation of the safety of carbon sequestration in shale reservoirs.

  • [1]
    李阳, 赵清民, 吕琦, 等. 中国陆相页岩油开发评价技术与实践[J]. 石油勘探与开发, 2022, 49(5): 955-964.

    LI Y, ZHAO Q M, LV Q, et al. Evaluation technology and practice of continental shale oil development in China[J]. Petroleum Exploration and Development, 2022, 49(5): 955-964.
    [2]
    张东晓, 杨婷云. 美国页岩气水力压裂开发对环境的影响[J]. 石油勘探与开发, 2015, 42(6): 801-807.

    ZHANG D X, YANG T Y. Environmental impacts of hydraulic fracturing in shale gas development in the United States[J]. Petroleum Exploration and Development, 2015, 42(6): 801-807.
    [3]
    ZHOU J, HU N, XIAN X, et al. Supercritical CO2 fracking for enhanced shale gas recovery and CO2 sequestration: results, status and future challenges[J]. Advances in Geo-Energy Research, 2019, 3(2): 207-224. doi: 10.26804/ager.2019.02.10
    [4]
    王海柱, 沈忠厚, 李根生. 超临界CO2开发页岩气技术[J]. 石油钻探技术, 2011, 39(3): 30-35. doi: 10.3969/j.issn.1001-0890.2011.03.005

    WANG H Z, SHEN Z H, LI G S. Feasibilityanalysis on shale gas exploitation with supercritical CO2[J]. Petroleum Drilling Techniques, 2011, 39(3): 30-35. doi: 10.3969/j.issn.1001-0890.2011.03.005
    [5]
    ZANG Y, WANG Q, WANG H, et al. Laboratory visua-lization of supercritical CO2 fracturing in tight sandstone using digital image correlation method[J]. Geoenergy Science and Engineering, 2023, 225: 211556. doi: 10.1016/j.geoen.2023.211556
    [6]
    YANG B, WANG H, WANG B, et al. Digital quantification of fracture in full-scale rock using micro-CT images: a fracturing experiment with N2 and CO2[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107682. doi: 10.1016/j.petrol.2020.107682
    [7]
    ZHENG Y, WANG H, TIAN G, et al. Experimental investigation of proppant transport in hydraulically fractured wells using supercritical CO2[J]. Journal of Petroleum Science and Engineering, 2022, 217: 110907. doi: 10.1016/j.petrol.2022.110907
    [8]
    杨兆臣, 卢迎波, 杨果, 等. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏, 2024, 36(1): 178-184.

    YANG Z C, LU Y B, YANG G, et al. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil[J]. Lithologic Reservoirs, 2024, 36(1): 178-184.
    [9]
    卢伟, 张华, 韩永亮, 等. 页岩油前置超临界二氧化碳压裂造缝技术[J]. 油气井测试, 2023, 32(1): 38-44.

    LU W, ZHANG H, HAN Y L, et al. Prepad supercritical carbon dioxide fracturing technology in shale oil reservoir[J]. Well Testing, 2023, 32(1): 38-44.
    [10]
    邹雨时, 李彦超, 李四海. CO2前置注入对页岩压裂裂缝形态和岩石物性的影响[J]. 天然气工业, 2021, 41(10): 83-94. doi: 10.3787/j.issn.1000-0976.2021.10.009

    ZOU Y S, LI Y C, LI S H. Influence of CO2 pre-injection on fracture morphology and the petrophysical properties in shale fracturing[J]. Natural Gas Industry, 2021, 41(10): 83-94. doi: 10.3787/j.issn.1000-0976.2021.10.009
    [11]
    TIAN G, WANG H, LI G, et al. Experiment investigation on the fracture initiation characteristics of shale saturated with CO2 and brine[C]//ARMA US Rock Mechanics/Geomechanics Symposium. [S. l. ]: ARMA, 2022: ARMA-2022-0229.
    [12]
    BAI B, NI H, SHI X, et al. The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale[J]. Energy, 2021, 228: 120663. doi: 10.1016/j.energy.2021.120663
    [13]
    MEMON S, FENG R, ALI M, et al. Supercritical CO2-Shale interaction induced natural fracture closure: implications for scCO2 hydraulic fracturing in shales[J]. Fuel, 2022, 313: 122682. doi: 10.1016/j.fuel.2021.122682
    [14]
    YANG K, ZHOU J, XIAN X, et al. Effect of supercritical CO2-water-shale interaction on mechanical properties of shale and its implication for carbon sequestration[J]. Gas Science and Engineering, 2023, 111: 204930. doi: 10.1016/j.jgsce.2023.204930
    [15]
    TAN J, XIE B, LV Q, et al. Mechanical properties of shale after CO2 and CO2-based fluids imbibition: experimental and modeling study[J]. Rock Mechanics and Rock Engineering, 2022, 55(3): 1197-1212. doi: 10.1007/s00603-021-02702-w
    [16]
    ZHOU J, YANG K, ZHOU L, et al. Microstructure and mechanical properties alterations in shale treated via CO2/CO2-water exposure[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108088. doi: 10.1016/j.petrol.2020.108088
    [17]
    田时锋, 周军平, 鲜学福, 等. 超临界CO2作用下页岩抗拉强度的变化规律[J]. 煤炭学报, 2023, 48(7): 2728-2736.

    TIAN S F, ZHOU J P, XIAN X F, et al. Effect of supercritical CO2 on alteration of tensile strength of shale[J]. Journal of China Coal Societ, 2023, 48(7): 2728-2736.
    [18]
    OZOTTA O, KOLAWOLE O, MALKI M L, et al. Nano-to-macro-scale structural, mineralogical, and mechanical alterations in a shale reservoir induced by exposure to supercritical CO2[J]. Applied Energy, 2022, 326: 120051.
    [19]
    李宁, 金之钧, 张士诚. 水/超临界二氧化碳-岩石作用下的页岩微观力学特性[J]. 石油勘探与开发, 2023, 50(3): 1-11.

    LI N, JIN Z J, ZHANG S C, et al. Micro-mechanical properties of shale due to water/supercritical carbon dioxide-rock interaction[J]. Petroleum Exploration and Development, 2023, 50(4): 872-882.
    [20]
    CHENG P, ZHANG C P, MA Z Y, et al. Experimental study of micromechanical properties alterations of shale matrix treated by ScCO2-Water saturation using nanoindentation tests[J]. Energy, 2022, 242: 122965. doi: 10.1016/j.energy.2021.122965
    [21]
    张小强, 王文伟, 姜玉龙, 等. 超临界CO2作用下煤岩组合体力学特性损伤及裂隙演化规律[J]. 煤炭学报, 2023, 48(11): 4049-4064.

    ZHANG X Q, WANG W W, JIANG Y L, et al. Mechanical properties and fracture damage law of coal-rock composition under the action of supercritical CO2[J]. Journal of China Coal Society, 2023, 48(11): 4049-4064.
    [22]
    MANDELBROT B B. The fractal geometry of nature[M]. San Francisco: Freeman, 1983.
    [23]
    侯贵廷. 裂缝的分形分析方法[J]. 应用基础与工程科学学报, 1994 (4): 299-305.

    HOU G T. Fractal analysis methods for fractures[J]. Journal of Basic Science and Engineering, 1994 (4): 299-305.
  • Cited by

    Periodical cited type(2)

    1. 王倩,沈桃淑. 健美操运动对胰岛素抵抗的调节及其在代谢紊乱中的作用研究. 体育科技文献通报. 2023(09): 253-256 .
    2. 付海芳. 牛皮胶原面料在体育运动服装中的应用可行性分析. 中国皮革. 2023(10): 138-141 .

    Other cited types(1)

Catalog

    Article views (32) PDF downloads (10) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return