Citation: | YANG Bing, HUANG Hai, WANG Haizhu, REN Qianqian, QIAO Ruihong, WANG Bin, FAN Xuhao, ZHANG Guoxin. Study on Adaptability of Supercritical CO2 Fracturing on Reservoir Permeability[J]. Journal of South China Normal University (Natural Science Edition), 2025, 57(1): 79-91. DOI: 10.6054/j.jscnun.2025009 |
To investigate the adaptability of supercritical CO2 fracturing to reservoir permeability, this study conducted supercritical CO2 fracturing experiments on tight sandstone samples with different permeabilities (0.08~1.0 mD). The characteristics of induced fractures were quantitatively analyzed using CT scanning, and the experimental results were validated and supplemented through field-scale numerical simulations. The results show that supercritical CO2 can effectively fracture rock samples with permeabilities in the range of 0.08~0.3 mD. As permeability increases, the complexity of induced fractures decreases, and the fracture volume reduces. When the permeability exceeds 0.5 mD, supercritical CO2 fails to fracture the rock, whereas hydraulic fracturing remains effective, primarily due to differences in fluid properties. Numerical simulations validated the experimental findings, indicating that supercritical CO2 can successfully fracture reservoirs with different permeabilities under field conditions, but the fracturing effectiveness varies significantly. As reservoir permeability increases (0.01~100 mD), parameters such as fracture half-length, width, height, fractal dimension, and filtration area decrease, while fluid loss gradually increases, leading to a decline in fracturing effectiveness. The study demonstrates that supercritical CO2 is more suitable for low-permeability reservoir stimulation, and parameter optimization is required during operations to adapt to reservoirs with different permeabilities. This research provides a theoretical foundation for the design of supercritical CO2 fracturing operations in unconventional reservoirs.
[1] |
贾爱林, 位云生, 郭智, 等. 中国致密砂岩气开发现状与前景展望[J]. 天然气工业, 2022, 42(1): 83-92. doi: 10.3787/j.issn.1000-0976.2022.01.008
JIA A L, WEI Y S, GUO Z, et al. Development status and prospect of tight sandstone gas in China[J]. Natural Gas Industry, 2022, 42(1): 83-92. doi: 10.3787/j.issn.1000-0976.2022.01.008
|
[2] |
邹才能, 杨智, 董大忠, 等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学, 2022, 47(5): 1517-1533.
ZOU C N, YANG Z, DONG D Z, et al. Formation, distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science, 2022, 47(5): 1517-1533.
|
[3] |
GONG L, ZENG L. Reservoir characterization and origin of tight gas sandstones in the upper Triassic Xujiahe formation, Western Sichuan Basin, China[J]. Journal of Petroleum Exploration and Production Technology, 2016, 6(3): 319-329. doi: 10.1007/s13202-015-0203-9
|
[4] |
孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 1015-1026.
SUN L D, ZOU C N, JIA A L, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026.
|
[5] |
贾承造, 姜林, 赵文. 页岩油气革命与页岩油气、致密油气基础地质理论问题[J]. 石油科学通报, 2023, 8(6): 695-706. doi: 10.3969/j.issn.2096-1693.2023.06.065
JIA C Z, JIANG L, ZHAO W. The shale revolution and basic geological theory problems of shale and tight oil and gas[J]. Petroleum Science Bulletin, 2023, 8(6): 695-706. doi: 10.3969/j.issn.2096-1693.2023.06.065
|
[6] |
岳亮, 孟庆强, 刘自亮, 等. 致密砂岩储层物性及非均质性特征——以四川盆地中部广安地区上三叠统须家河组六段为例[J]. 石油与天然气地质, 2022, 43(3): 597-609.
YUE L, MENG Q, LIU Z L, et al. Physical property and heterogeneity of tight sandstone reservoirs: a case of the Upper Triassic 6th member of Xujiahe Formation, Guang'an, Central Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 597-609.
|
[7] |
FARUQE H M, FIRST E L, BOUKOUVALA F, FLOUDAS C A. A novel framework for carbon capture, utilization, and sequestration, CCUS[J]. Computer Aided Chemical Engineering, 2014, 34: 98-107.
|
[8] |
ZHANG Z, MAO J, YANG X, et al. Advances in waterless fracturing technologies for unconventional reservoirs[J]. Energy Sources: Part A, 2019, 41: 237-251.
|
[9] |
王海柱, 李根生, 郑永, 等. 超临界CO2压裂技术现状与展望[J]. 石油学报, 2020, 41(1): 116-126.
WANG H Z, LI G S, ZHENG Y, et al. Research status and prospects of supercritical CO2 fracturing technology[J]. Acta Petrolei Sinica, 2020, 41(1): 116-126.
|
[10] |
WANG H Z, LI G S, SHEN Z H. A feasibility analysis on shale gas exploitation with supercritical carbon dioxide[J]. Energy Sources: Part A, 2012, 34: 1426-1435.
|
[11] |
ESPINOZA D N, SANTAMARINA J C. Water-CO2-mineral systems: interfacial tension, contact angle, and diffusion-implications to CO2 geological storage[J]. Water Resources Research, 2010, 46(7): W07537.
|
[12] |
PEI P, LING K, HE J, et al. Shale gas reservoir treatment by a CO2-based technology[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1595-1606.
|
[13] |
柏明星, 刘业新, 张志超, 等. 特低渗透高含水油藏CO2驱油参数优化[J]. 华南师范大学学报(自然科学版), 2024, 56(4): 10-18.
BAI M X, LIU Y X, ZHANG Z C, et al. Optimization of CO2 flooding parameters in ultra-low permeability oil reservoirs with high water cut[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(4): 10-18.
|
[14] |
石宇, 崔启亮, 杨子江, 等. 基于灰色关联度分析和多目标优化的浅层含水层储热性能整体优化[J]. 天然气工业, 2023, 43(6): 156-168. doi: 10.3787/j.issn.1000-0976.2023.06.016
SHI Y, CUI Q L, YANG Z J, et al. Optimizing the thermal energy storage performance of shallow aquifer based on gray correlation analysis and multi-objective optimization[J]. Natural Gas Industry, 2023, 43(6): 156-168. doi: 10.3787/j.issn.1000-0976.2023.06.016
|
[15] |
刘思哲, 周进, 王亮, 等. 超临界CO2强化开采页岩气技术研究进展[J]. 化学工程师, 2021, 35(9): 52-56.
LIU S Z, ZHOU J, WANG L, et al. Research progress of supercritical CO2 enhanced shale gas extraction technology[J]. Chemical Engineer, 2021, 35(9): 52-56.
|
[16] |
丛日超, 王海柱, 李根生, 等. 超临界CO2聚能压裂开发煤层气可行性研究[J]. 煤炭学报, 2023, 48(8): 3162-3171.
CONG R C, WANG H Z, LI G S, et al. Feasibility on exploitation of coalbed methane by SC-CO2 shock fracturing[J]. Journal of China Coal Society[J]. 2023, 48(8): 3162-3171.
|
[17] |
李小刚, 冉龙海, 杨兆中, 等. 超临界CO2压裂裂缝特征研究现状与展望[J]. 特种油气藏, 2022, 29(2): 1-8. doi: 10.3969/j.issn.1006-6535.2022.02.001
LI X G, RAN L H, YANG Z Z, et al. Current status and prospect of study on supercritical CO2 fracturing characteristics[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 1-8. doi: 10.3969/j.issn.1006-6535.2022.02.001
|
[18] |
YANG B, WANG H Z. Fundamental study and utilization on supercritical CO2 fracturing developing unconventional resources: current status, challenge and future perspectives[J]. Petroleum Science, 2022, 19(6): 2757-2780. doi: 10.1016/j.petsci.2022.08.029
|
[19] |
ISHIDA T, CHEN Q, MIZUTA Y, et al. Influence of fluid viscosity on the hydraulic fracturing mechanism[J]. Journal of Energy Resources Technology, 2004, 126: 190-200. doi: 10.1115/1.1791651
|
[20] |
ISHIDA T, AOYAGI K, NIWA T, et al. Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2[J]. Geophysical Research Letters, 2012, 39: 16309-16309.
|
[21] |
ZHOU D W, ZHANG G Q, WANG Y, et al. Experimental investigation on fracture propagation modes in supercritical carbon dioxide fracturing using acoustic emission monitoring[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 111-119. doi: 10.1016/j.ijrmms.2018.07.010
|
[22] |
ZOU Y S, LI N, MA X F, et al. Experimental study on the growth behavior of supercritical CO2 induced fractures in a layered tight sandstone formation[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 145-156.
|
[23] |
ZHANG X W, LU Y, TANG J, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2017, 190: 370-378. doi: 10.3969/j.issn.0253-2409.2017.03.016
|
[24] |
DENG B, YIN G, LI M, et al. Feature of fractures induced by hydrofracturing treatment using water and L-CO2 as fracturing fluids in laboratory experiments[J]. Fuel, 2018, 226: 35-46. doi: 10.1016/j.fuel.2018.03.162
|
[25] |
MOTAKABBIR K A, BERKOWITZ M L. Isothermal compressibility of SPC/E water[J]. The Journal of Physical Chemistry, 1990, 94: 8359-8362. doi: 10.1021/j100384a067
|
[26] |
YANG B, WANG H Z, SHEN Z H, et al. Full-sample X ray microcomputed tomography analysis of supercritical CO2 fracturing in tight sandstone: effect of stress on fracture dynamics[J]. Energy & Fuels, 2021, 35: 1308-1321. doi: 10.3969/j.issn.1671-5292.2021.10.005
|
[27] |
ZHAO Z, LI X, HE J, et al. A laboratory investigation of fracture propagation induced by supercritical carbon dio-xide fracturing in continental shale with interbeds[J]. Journal of Petroleum Science and Engineering, 2018, 166: 739-746. doi: 10.1016/j.petrol.2018.03.066
|
[28] |
JIANG Y, QIN C, KANG Z, et al. Experimental study of supercritical CO2 fracturing on initiation pressure and fracture propagation in shale under different triaxial stress conditions[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 382-394. doi: 10.1016/j.jngse.2018.04.022
|
[29] |
YANG B, WANG H Z, WANG B, et al. Digital quantification of fracture in full-scale rock using micro-CT images: a fracturing experiment with N2 and CO2[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107682. doi: 10.1016/j.petrol.2020.107682
|
[30] |
KIZAKI A, TANAKA H, OHASHI K, et al. Hydraulic fracturing in Inada granite and Ogino tuff using super cri-tical carbon dioxide and water as fracturing fluids[J]. Journal of MMIJ, 2013, 129: 461-466. doi: 10.2473/journalofmmij.129.461
|
[31] |
ZHANG Y, HE J M, LI X, et al. Experimental study on the supercritical CO2 fracturing of shale considering anisotropic effects[J]. Journal of Petroleum Science and Engineering, 2019, 173: 932-940. doi: 10.1016/j.petrol.2018.10.092
|
[32] |
HE J, ZHANG Y, LI X, et al. Experimental investigation on the fractures induced by hydraulic fracturing using freshwater and supercritical CO2 in shale under uniaxial stress[J]. Rock Mechanics and Rock Engineering, 2019, 52: 3585-3596. doi: 10.1007/s00603-019-01820-w
|
[33] |
FALCONER K J. Fractal geometry: mathematical foundations and applications[M]. New York: John Wiley & Sons, 1990.
|
[34] |
BONNET E, BOUR O, ODLING N E, et al. Scaling of fracture systems in geological media[J]. Reviews of Geophysics, 2001, 39(3): 347-383. doi: 10.1029/1999RG000074
|
[35] |
PANIGRAPHY C, GARCIA-PEDRERO A, SEAL A, et al. An approximated box height for differential-box-counting method to estimate fractal dimensions of gray-scale images[J]. Entropy, 2017, 19(10): 534. doi: 10.3390/e19100534
|
[36] |
LI S H, ZHANG S C, MA X F, et al. Hydraulicfractures induced by water-/carbon dioxide-based fluids in tight sandstones[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3323-3340. doi: 10.1007/s00603-019-01777-w
|
[37] |
BARREE R D. A practical numerical simulator for three-dimensional fracture propagation in heterogeneous media[C]//SPE Reservoir Simulation Symposium. San Francisco: Society of Petroleum Engineers, 1983.
|
[38] |
MAMADOU D, AYAMAN G, BOB B, et al. Refracturing on horizontal wells in the eagle ford shale in south texas-one operator's perspective[C]//SPE Hydraulic Fracturing Technology Confe-rence. Texas: SPE, 2015.
|
[39] |
BSTTRR R D, MIDKIMIND J L, SVATEK K J. Reservoir and completion considerations for the refracturing of horizontal wells[J]. SPE Production & Operation, 2018, 33: 1-11.
|
[40] |
臧雨溪, 王海柱, 王斌, 等. 鄂尔多斯盆地页岩油储层前置CO2压裂流体分布特征[J]. 西安石油大学学报(自然科学版), 2024, 39(2): 55-61.
ZANG Y X, WANG H Z, WANG B, et al. Fluid distribution characteristics in CO2 fracturing for shale oil reservoirs in Ordos Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2024, 39(2): 55-61.
|
1. |
李宪,达举霞,章欢. 四阶两点边值问题n个对称正解的存在性. 华南师范大学学报(自然科学版). 2024(01): 123-127 .
![]() |