• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
TANG Yong, CHENG Minmao, QIN Jiazheng, YUAN Chengang, HONG Yinghe. Mechanism of Oil Displacement by CO2 and Chemical Agent Flooding in Low-Permeability Glutenite Reservoirs[J]. Journal of South China Normal University (Natural Science Edition), 2025, 57(1): 51-59. DOI: 10.6054/j.jscnun.2025006
Citation: TANG Yong, CHENG Minmao, QIN Jiazheng, YUAN Chengang, HONG Yinghe. Mechanism of Oil Displacement by CO2 and Chemical Agent Flooding in Low-Permeability Glutenite Reservoirs[J]. Journal of South China Normal University (Natural Science Edition), 2025, 57(1): 51-59. DOI: 10.6054/j.jscnun.2025006

Mechanism of Oil Displacement by CO2 and Chemical Agent Flooding in Low-Permeability Glutenite Reservoirs

More Information
  • Received Date: October 17, 2024
  • Low-permeability glutenite reservoirs exhibit significant heterogeneity, which complicates waterflooding development, results in relatively low recovery rates, and increases the likelihood of gas channeling during gas flooding. A pressing need exists to investigate enhanced oil recovery (EOR) methods specifically suited for low-permeability glutenite reservoirs. The oil displacement mechanism of CO2 flooding combined with chemical agent flooding was elucidated using the X oil reservoir as a case study. An experiment was conducted to measure the interfacial tension of CO2 flooding, followed by an assessment of the interfacial tension of chemical agent flooding, with a long-core experiment performed to evaluate the enhanced oil recovery performance of CO2 and chemical agent flooding. The results demonstrate that as formation pressure increases, the interfacial tension between CO2 and crude oil decreases, with a further reduction observed as the degree of mixing increases. The interfacial contact angle is lowered, and interfacial tension is reduced by altering the wettability of the reservoir. The oil displacement efficiency is maximized when 0.4 HCPV chemical slugs are combined with CO2 injection. Appropriate chemical slugs inhibit gas channeling and extend the distribution range, thereby enhancing displacement efficiency. A theoretical foundation for the efficient development of low-permeability glutenite reservoirs is provided, with significant implications for the further promotion and application of CO2 and chemical agent flooding technology in analogous reservoirs.

  • [1]
    王哲, 曹广胜, 白玉杰, 等. 低渗透油藏提高采收率技术现状及展望[J]. 特种油气藏, 2023, 30(1): 1-13. doi: 10.3969/j.issn.1006-6535.2023.01.001

    WANG Z, CAO G S, BAI Y J, et al. Development status and prospect of EOR technology in low-permeability re-servoirs[J]. Special Oil & Gas Reservoirs, 2023, 30(1): 1-13. doi: 10.3969/j.issn.1006-6535.2023.01.001
    [2]
    王成俊, 洪玲, 高瑞民, 等. 低渗透油藏提高采收率技术现状与挑战[J]. 非常规油气, 2018, 5(3): 102-108. doi: 10.3969/j.issn.2095-8471.2018.03.018

    WANG C J, HONG L, GAO R M, et al. Status-quo and challenges of enhanced oil recovery in low permeability reservoirs[J]. Unconventional Oil & Gas, 2018, 5(3): 102-108. doi: 10.3969/j.issn.2095-8471.2018.03.018
    [3]
    李姝, 黄学斌, 肖玉茹, 等. 渤海湾盆地济阳坳陷中深层低渗砂砾岩油藏控制储量升级标准[J]. 石油实验地质, 2021, 43(1): 184-192.

    LI S, HUANG X B, XIAO Y R, et al. Controlled reserve upgrade standard for middle-deep low permeability glutenite reservoirs in Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 184-192.
    [4]
    王光付, 廖荣凤, 李江龙, 等. 中国石化低渗透油藏开发状况及前景[J]. 油气地质与采收率, 2007(3): 84-89. doi: 10.3969/j.issn.1009-9603.2007.03.025
    [5]
    曹小朋, 刘海成, 任允鹏, 等. 胜利油田低渗透油藏开发技术进展及展望[J]. 油气地质与采收率, 2024, 31(5): 48-55.

    CAO X P, LIU H C, REN Y P, et al. Progress and prospects of development technologies for low-permeability oil reservoirs in Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(5): 48-55.
    [6]
    陈波, 王子天, 康莉, 等. 准噶尔盆地玛北地区三叠系百口泉组储层成岩作用及孔隙演化[J]. 吉林大学学报(地球科学版), 2016, 61(1): 23-35.

    CHEN B, WANG Z T, KANG L, et al. Diagenesis and pore evolution of triassic Baikouquan formation in Mabei Region, Junggar Basin[J]. Journal of Jilin University(Earth Science Edition), 2016, 61(1): 23-35.
    [7]
    LI Y, ZHANG J F. Research on optimization of water quality index system for low permeability reservoir water injection development[J]. Chemistry and Technology of Fuels and Oils, 2023, 58(6): 1018-1026. doi: 10.1007/s10553-023-01484-x
    [8]
    王磊, 张辉, 彭小东, 等. 低渗透砂砾岩油藏水敏伤害机理及注入水水源优选[J]. 石油勘探与开发, 2019, 46(6): 1148-1158.

    WANG L, ZHANG H, PENG X D, et al. Water-sensitive damage mechanism and the injection water source optimization of low permeability sandy conglomerate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1148-1158.
    [9]
    王智林, 林波, 葛永涛, 等. 低渗油藏水驱后注CO2补充能量机理及方式优化[J]. 断块油气田, 2019, 26(2): 231-235.

    WANG Z L, LIN B, GE Y T, et al. Mechanisms and optimization of supplementing in-situ energy by CO2 injection after water flooding in low permeability reservoirs[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 231-235.
    [10]
    张岩, 冯海顺, 翟勇, 等. 低渗透稠油油藏CO2压驱提高采收率机理及规律研究[J]. 石油钻探技术, 2024, 52(6): 97-106.

    ZHANG Y, FENG H S, ZHAI Y, et al. Mechanism and law of CO2 pressure flooding in enhancing oil recovery in low-permeability heavy oil reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(6): 97-106.
    [11]
    AHMED B, AMIN S H, ROOZBEH R. A review of fluid displacement mechanisms in surfactant-based chemical enhanced oil recovery processes: analyses of key influencing factors[J]. Petroleum Science, 2022, 19(3): 1211-1235.
    [12]
    陈霆, 孙志刚. 不同化学驱油体系微观驱油机理评价方法[J]. 石油钻探技术, 2013, 41(2): 87-92.

    CHEN T, SUN Z G. Microscopic flooding mechanism of different chemical displacement systems[J]. Petroleum Drilling Techniques, 2013, 41(2): 87-92.
    [13]
    汤瑞佳, 陈龙龙, 江绍静, 等. 低渗透油藏强化CO2/水交替注入驱油效果实验研究[J]. 非常规油气, 2024, 11(4): 70-78.

    TANG R J, CHEN L L, JIANG S J, et al. Experimental study on the effect of enhanced CO2/water alternate flooding in low permeability reservoir[J]. Unconventional Oil & Gas, 2024, 11(4): 70-78.
    [14]
    谭龙, 聂振荣, 熊志国, 等. 砾岩油藏化学驱微观孔隙剩余油分级动用机理——以克拉玛依油田砾岩油藏K7区块为例[J]. 油气地质与采收率, 2021, 28(4): 107-112.

    TAN L, NIE Z R, XIONG Z G, et al. Study on graded production mechanism of remaining oil in micro-pores of chemical flooding in conglomerate reservoirs: a case of conglomerate reservoir in Block K7, Karamay Oilfield, Xinjiang[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(4): 107-112.
    [15]
    HOU D L, LI J H, TANG H M, et al. Study on CO2-water co-injection miscible characteristics in low-permeability near-critical volatile oil reservoir[J]. Energies, 2022, 15: 1-21.
    [16]
    孙成岩. CO2驱后水气交替注入驱替特征及剩余油启动机制[J]. 大庆石油地质与开发, 2024, 43(1): 52-58.

    SUN C Y. Displacement characteristics and remaining oil startup mechanism of WAG after CO2 flooding[J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(1): 52-58.
    [17]
    张文旗, 穆朗枫, 邓西里. 特低-超低渗透油藏注水开发影响因素分析及储层吸水能力评价[J]. 测井技术, 2016, 40(4): 472-476.

    ZHANG W Q, MU L F, DENG X L, et al. Analysis of influencing factors of ultra-low permeability reservoirs water-flooding and evaluation of reservoir water absorption capacity[J]. Well Logging Technology, 2016, 40(4): 472-476.
    [18]
    AFZALI S, REZAEI N, ZENDEHBOUDI S. A comprehensive review on enhanced oil recovery by water alternating gas (WAG) injection[J]. Fuel, 2018, 227: 218-246.
    [19]
    王建波, 高云丛, 宗畅. 特低渗油藏CO2非混相驱水气交替注入见效特征[J]. 大庆石油地质与开发, 2016, 35(2): 116-120.

    WANG J B, GAO Y S, ZONG C, et al. Response characteristics of CO2-immiscible-flooding WAG in the ultra-low permeability oil reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(2): 116-120.
    [20]
    胡文瑞, 魏漪, 鲍敬伟. 中国低渗透油气藏开发理论与技术进展[J]. 石油勘探与开发, 2018, 45 (4): 646-656.

    HU W R, WEI Y, BAO J W. Development of the theory and technology for low permeability reservoirs in China[J]. Petroleum Exploration and Development, 2018, 45 (4): 646-656.
    [21]
    张杰城, 杜鑫芳, 赫文豪, 等. 热-流耦合与热-流-固耦合作用下的水气交替及间歇注入对咸水层CO2溶解封存的影响[J]. 华南师范大学学报(自然科学版), 2024, 56(1): 9-17. doi: 10.6054/j.jscnun.2024002

    ZHAN J C, DU X F, HE W H, et al. Impact of water alternating gas and intermittent injection on CO2 dissolution during CO2 sequestration in saline aquifers considering thermal-hydraulic coupling and thermal-hydraulic-mechanical coupling effects[J]. Journal of South China Normal University(Natural Science Edition), 2024, 56(1): 9-17. doi: 10.6054/j.jscnun.2024002
    [22]
    ALAAMRI J, IGLAUER S, HOTEIT H, et al. Interplay of interfacial tension and capillarity: optimizing surfactant displacement efficiency in reservoirs[J]. Journal of Molecular Liquids, 2024, 395: 123915.
    [23]
    SUN X, LIU J, DAI X, et al. On the application of surfactant and water alternating gas (SAG/WAG) injection to improve oil recovery in tight reservoirs[J]. Energy Reports, 2021, 7: 2452-2459.
    [24]
    RAO D N, LEE J I. Determination of gas-oil miscibility conditions by interfacial tension measurements[J]. Journal of Colloid and Interface Science, 2003, 262(2): 474-482.
    [25]
    WAN H T, LUO M, LUN Z M, et al. Determination and comparison of interfacial interactions between CO2, crude oil, and brine at reservoir conditions[J]. Energy & Fuels, 2018, 32(8): 8187-8192.
    [26]
    BASHFORTH S, ADAMS J C. An attempt to test the theory of capillary action[M]. London: Cambridge University Press, 1892.
    [27]
    LI B F, ZHENG L, CAO A Q, et al. Effect of interaction between CO2 and crude oil on the evolution of interface characteristics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647: 129043.

Catalog

    Article views (21) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return