• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YANG Haifeng, YU Haiyang, WANG Tongbing, HUANG Xiaoming, WANG Songyang, ZENG Huake, HUANG Tao, WANG Yang. Synergistic Mechanism of CO2 and Liquid Phase De-Blocking Agent and Their Performance of Carbon Storage in Condensate Gas Reservoirs[J]. Journal of South China Normal University (Natural Science Edition), 2025, 57(1): 22-29. DOI: 10.6054/j.jscnun.2025003
Citation: YANG Haifeng, YU Haiyang, WANG Tongbing, HUANG Xiaoming, WANG Songyang, ZENG Huake, HUANG Tao, WANG Yang. Synergistic Mechanism of CO2 and Liquid Phase De-Blocking Agent and Their Performance of Carbon Storage in Condensate Gas Reservoirs[J]. Journal of South China Normal University (Natural Science Edition), 2025, 57(1): 22-29. DOI: 10.6054/j.jscnun.2025003

Synergistic Mechanism of CO2 and Liquid Phase De-Blocking Agent and Their Performance of Carbon Storage in Condensate Gas Reservoirs

More Information
  • Received Date: September 05, 2024
  • The effects of injecting CO2, liquid phase de-blocking agents, and CO2-dissolved liquid phase de-blocking agents on the removal of condensate and water block pollution in condensate gas reservoirs were investigated. The research emphasized the mechanisms of synergistic de-blocking and carbon storage involving CO2 and li-quid phase de-blocking agents in these reservoirs. The results show that under conditions of 12 MPa and 100 ℃, CO2 is not miscible with condensate oil, resulting in a permeability recovery rate of 30.54% in reservoir pollution removal experiments. In contrast, when CO2 is dissolved in a liquid phase de-blocking agent, the permeability recovery rate significantly increases to 74.38%, demonstrating enhanced de-blocking effectiveness. In the process of CO2 injection for de-blocking, the CO2 storage rate is 92.75%; however, when using CO2-dissolved liquid phase de-blocking agents, the CO2 storage rate reaches 98.47%. During the mass transfer of CO2, it can dissolve in formation water and condensate oil, facilitating carbon storage. The CO2-dissolved liquid phase de-blocking agent combines the advantages of CO2 and chemical de-blocking agents, significantly improving de-blocking effectiveness while also enabling effective CO2 storage. This approach addresses the need for enhanced gas recovery and carbon neutrality. The results of the research provide new technical perspective for the efficient development of condensate gas reservoirs.

  • [1]
    刘合, 梁坤, 张国生, 等. 碳达峰、碳中和约束下我国天然气发展策略研究[J]. 中国工程科学, 2021, 23(6): 33-42.

    LIU H, LIANG K, ZHANG G S, et al. China's natural gas development strategy under the constraints of carbon peak and carbon neutrality[J]. Strategic Study of Chinese Academy of Engineering, 2021, 23(6): 33-42.
    [2]
    邹才能, 何东博, 贾成业, 等. 世界能源转型内涵、路径及其对碳中和的意义[J]. 石油学报, 2021, 42(2): 233-247.

    ZOU C N, HE D B, JIA C Y, et al. Connotation and pathway of world energy transition and its significance for carbon neutral[J]. Acta Petrolei Sinica, 2021, 42(2): 233-247.
    [3]
    LIU W, ZHANG X, WAN J F, et al. Large-scale carbon dioxide storage in salt caverns: evaluation of operation, safety, and potential in China[J]. Engineering, 2024, 40(9): 226-246. doi: 10.3969/j.issn.1671-0711.2024.09.095
    [4]
    CHEN B L, MEHANA M Z, PAWAR R J. Quantitatively evaluating greenhouse gas leakage from CO2 enhanced oil recovery fields[J]. Advances in Geo-Energy Research, 2023, 7(1): 20-27.
    [5]
    YU H Y, FENG J Y, ZENG H K, et al. A new empirical correlation of MMP prediction for oil-impure CO2 systems[J]. Fuel, 2024, 371: 132043.
    [6]
    贾昊卫, 于海洋, 谢非矾, 等. CO2微气泡溶解动力学及提高采收率机理研究[J]. 力学学报, 2023, 55(3): 755-764.

    JIA H W, YU H Y, XIE F F, et al. Research on CO2 microbubble dissolution kinetics and enhanced oil recovery mechanisms[J]. Chinese Journal of Mechanics, 2023, 55(3): 755-764.
    [7]
    JIA H W, YU H Y, WANG S Y, et al. Investigation of CO2 microbubble assisted carbon sequestration and gravity-induced microbubble ripening in low permeability reservoirs[J]. Applied Energy, 2024, 373: 123954.
    [8]
    白文鹏, 程时清, 汪洋, 等. 致密凝析气井多相流不稳定产量预测方法[J]. 石油勘探与开发, 2024, 51(1): 154-160.

    BAI W P, CHENG S Q, WANG Y, et al. A transient production prediction method for tight condensate gas wells with multiphase flow[J]. Petroleum Exploration and Development, 2024, 51(1): 154-160.
    [9]
    JING W L, ZHANG L, LI A F, et al. Phase behaviors of gas condensate at pore scale: direct visualization via microfluidics and in-situ CT scanning[J]. SPE Journal, 2024, 29(5): 2566-2577.
    [10]
    JING W L, ZHANG L, LI A F, et al. Phase behavior of gas condensate in porous media using real-time computed tomography scanning[J]. Petroleum Science, 2024, 21(2): 1032-1043.
    [11]
    侯大力, 龚凤鸣, 陈泊, 等. 底水砂岩气藏注CO2驱气提高采收率机理及埋存效果[J]. 天然气工业, 2024, 44(4): 93-103. doi: 10.3787/j.issn.1000-0976.2024.04.010

    HOU D L, GONG F M, CHEN B, et al. Gas recovery enhancement and CO2 sandstone gas reservoir[J]. Natural Gas Industry, 2024, 44(4): 93-103. doi: 10.3787/j.issn.1000-0976.2024.04.010
    [12]
    UDOVCHENKO O, BLICHARSKI J, MATⅡSHYN L. A case study of gas-condensate reservoir performance with gas cycling[J]. Archives of Mining Sciences, 2024, 69(1): 25-49.
    [13]
    MATKIVSKYI S. Optimization of gas recycling technique in development of gas-condensate fields[J]. Mining of Mineral Deposits, 2023, 17(1): 101-107. doi: 10.33271/mining17.01.101
    [14]
    杜建芬, 肖翠, 汪周华, 等. BK气藏反凝析污染评价及解除方法实验[J]. 天然气工业, 2015, 35(4): 52-56. doi: 10.3787/j.issn.1000-0976.2015.04.008

    DU J F, XIAO C, WANG Z H, et al. Laboratory study on the evaluation and removal of retrograde condensate damage in the Baka gas reservoir, Tuha Basin[J]. Natural Gas Industry, 2015, 35(4): 52-56. doi: 10.3787/j.issn.1000-0976.2015.04.008
    [15]
    HAN X B, YU H Y, TANG H T, et al. Investigation on oil recovery and countercurrent imbibition distance coupling carbonated water with surfactant in shale oil reservoirs[J]. Fuel, 2024, 374: 132409. doi: 10.1016/j.fuel.2024.132409
    [16]
    HASSAN A, MAHMOUD M, AL-MAJED A, et al. Gas condensate treatment: a critical review of materials, methods, field applications, and new solutions[J]. Journal of Petroleum Science and Engineering, 2019, 177: 602-613.
    [17]
    NOWROUZI I, MOHAMMADI A H, MANSHAD A K. Effect of a synthesized anionic fluorinated surfactant on wettability alteration for chemical treatment of near-wellbore zone in carbonate gas condensate reservoirs[J]. Petroleum Science, 2020, 17: 1655-1668.
    [18]
    NOWROUZI I, MOHAMMADI A H, KHAKSAR MANSHAD A. Modifying the wettability of carbonate gas condensate reservoirs rocks toward gasophilic for condensate blockage removal and enhanced hydrocarbon recovery using a synthesized anionic fluorinated surfactant[J]. Energy & Fuels, 2023, 37(16): 11707-11719.
    [19]
    SHARIFZADEH S, HASSANAJILI S, RAHIMPOUR M R. Wettability alteration of gas condensate reservoir rocks to gas wetness by sol-gel process using fluoroalkylsilane[J]. Journal of Applied Polymer Science, 2013, 128(6): 4077-4085. doi: 10.1002/app.38632
    [20]
    HASSAN A M, MAHMOUD M A, AL-MAJED A A, et al. Novel technique to eliminate gas condensation in gas condensate reservoirs using thermochemical fluids[J]. Energy & Fuels, 2018, 32(12): 12843-12850.
    [21]
    FRANCO-AGUIRRE M, ZABALA R D, LOPERA S H, et al. Interaction of anionic surfactant-nanoparticles for gas-wettability alteration of sandstone in tight gas-condensate reservoirs[J]. Journal of Natural Gas Science and Engineering, 2018, 51: 53-64.
    [22]
    AHMADI R, FARMANI Z, OSFOURI S, et al. Condensate blockage remediation in a gas reservoir through wettability alteration using natural CaCO3 nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 579: 123702.
    [23]
    TANG M R, WANG C W, DENG X A, et al. Experimental investigation on plugging performance of nanospheres in low-permeability reservoir with bottom water[J]. Advances in Geo-Energy Research, 2022, 6(2): 95-103.
    [24]
    梁天博, 马实英, 魏东亚, 等. 低渗透油藏水锁机理与助排表面活性剂的优选原则[J]. 石油学报, 2020, 41(6): 745-752.

    LIANG T B, MA S Y, WEI D Y, et al. Water blocking mechanism of low-permeability reservoirs and screening principle of flowback surfactants[J]. Acta Petrolei Sinica, 2020, 41(6): 745-752.
    [25]
    龚云蕾, 廖云虎, 陈霄, 等. 螯合解堵液体系在涠洲低渗储层的研究与应用[J]. 新疆石油天然气, 2020, 16(4): 95-99.

    GONG Y L, LIAO Y H, CHEN X, et al. The study and application of chelate acid in Weizhou low-permeability reservoir[J]. Xinjiang Oil & Gas (Edition of Natural Science), 2020, 16(4): 95-99.
    [26]
    雷炜, 许剑, 赵哲军, 等. 川西致密砂岩气藏近井带复合污染治理技术研究[J]. 西南石油大学学报(自然科学版), 2022, 44(3): 207-214.

    LEI W, XU J, ZHAO Z J, et al. A study on compound pollution control technology immediate vicinity of wellbore of tight gas reservoir in western Sichuan[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(3): 207-214.
    [27]
    YU H Y, TANG H T, HAN X B, et al. Enhanced oil recovery and CO2 Storage by enhanced carbonated water injection: a mini-review[J]. Energy & Fuels, 2024, 38(14): 12409-12432.
    [28]
    于海洋, 陈哲伟, 芦鑫, 等. 碳化水驱提高采收率研究进展[J]. 石油科学通报, 2020, 5(2): 204-228.

    YU H Y, CHEN Z W, LU X, et al. Review of enhanced oil recovery by carbonated water injection[J]. Petroleum Science Bulletin, 2020, 5(2): 204-228.
  • Cited by

    Periodical cited type(1)

    1. 聂萌瑶,刘鑫. 考虑最大通信量的物联网群体访问路由算法. 计算机仿真. 2024(02): 415-419 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return