• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
QIN Jiazheng, QIU Shuai, QIAO Yu, TANG Yong, HE Youwei. Evaluation of Working Gas Volume and Influencing Factors in Gas Storage Reservoirs Utilizing CO2 as Cushion Gas[J]. Journal of South China Normal University (Natural Science Edition), 2025, 57(1): 1-12. DOI: 10.6054/j.jscnun.2025001
Citation: QIN Jiazheng, QIU Shuai, QIAO Yu, TANG Yong, HE Youwei. Evaluation of Working Gas Volume and Influencing Factors in Gas Storage Reservoirs Utilizing CO2 as Cushion Gas[J]. Journal of South China Normal University (Natural Science Edition), 2025, 57(1): 1-12. DOI: 10.6054/j.jscnun.2025001

Evaluation of Working Gas Volume and Influencing Factors in Gas Storage Reservoirs Utilizing CO2 as Cushion Gas

More Information
  • Received Date: October 23, 2024
  • The transformation of depleted gas reservoirs into gas storage facilities serves as a vital strategy for balancing natural gas supply and demand. Utilizing CO2 as cushion gas provides dual advantages of economic benefits and environmental protection. Enhancements in the efficiency and accuracy of working gas volume evaluation for this type of storage are achieved by analyzing the construction model of gas storage facilities converted from depleted gas reservoirs with CO2 as the cushion gas. Grounded on the principle of material balance in reservoirs, this study incorporates the solubility of CO2 and CH4 in formation water and the effects of water body to develop a working gas vo-lume evaluation model. A sensitivity analysis of factors such as water body multiples, bound water saturation, and formation temperature on the working gas volume of the storage facility was conducted. Results indicate that water body multiples, original formation pressure, bound water saturation, and formation temperature positively correlate with the working gas volume, whereas abandoned reservoir pressure, water salinity, and cushion gas injection vo-lume exhibit negative correlations. Among these, the injection volume of cushion gas significantly influences the working gas volume with a correlation coefficient of -0.777 3; water body multiples have a secondary impact with a coefficient of 0.459 6, while formation temperature has the least effect, yielding a coefficient of only 0.002 7. The findings offer theoretical guidance for the design and assessment of working gas volume in further transformations of depleted gas reservoirs into gas storage facilities.

  • [1]
    《中国天然气发展报告(2024)》编委会编. 中国天然气发展报告2024[M]. 北京: 石油工业出版社, 2024.
    [2]
    赵旭. 关于西气东输管道调峰方式的研究[D]. 西安: 西安石油大学, 2012.

    ZHAO X. About the west-east gas pipeline peak load regulating mode research[D]. Xi'an: Xi'an Shiyou University, 2012.
    [3]
    胡彩云, 李聪, 杨智斌, 等. 气顶砂岩油藏型储气库运行上限压力和库容量定量评价研究[J]. 地质力学学报, 2024, 30(3): 419-426.

    HU C Y, LI C, YANG Z B, et al. Quantitative evaluation of maximum operating pressure and storage capacity for gas-top sandstone reservoir type gas storage[J]. Journal of Geomechanics, 2024, 30(3): 419-426.
    [4]
    李春, 闵忠顺, 何海燕, 等. 国内地下储气库库址变化新趋势与发展建议[J]. 石油钻探技术, 2024, 52(3): 153-158.

    LI C, MIN Z S, HE H Y, et al. New trend and development suggestions for change of underground gas storage sites in China[J]. Petroleum Drilling Techniques, 2024, 52(3): 153-158.
    [5]
    HE Y W, QIAO Y, XIE Y X, et al. Evaluation of underground gas storage capacity in the depleted gas reservoir with water evaporation and salt precipitation[J]. Geoenergy Science and Engineering, 2024, 238, 212895. doi: 10.1016/j.geoen.2024.212895
    [6]
    龚瑞程, 王爱明, 陈芳芳, 等. MB8边底水气藏储气库运行参数设计[J]. 西南石油大学学报(自然科学版), 2023, 45(2): 135-144.

    GONG R C, WANG A M, CHEN F F, et al. Design of operating parameter in MB8 gas storage with edge and bottom water[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(2): 135-144.
    [7]
    丁洋洋, 秦正山, 何勇明, 等. 枯竭油藏型储气库库容量化室内实验研究[J]. 非常规油气, 2024, 11(4): 89-96.

    DING Y Y, QIN Z S, HE Y M, et al. Experimental study on storage capacity of gas storage in depleted oil reservoir[J]. Unconventional Oil & Gas, 2024, 11(4): 89-96.
    [8]
    胡俊, 杨佳坤, 胥洪成, 等. 复杂地质条件储气库多因素库容复核新方法[J]. 油气藏评价与开发, 2024, 14(5): 795-804.

    HU J, YANG J K. XU H C, et al. A new method for multi-factor capacity review of underground gas storage under complex geological conditions[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 795-804.
    [9]
    杜思宇, 柏明星, 张志超, 等. 天然气地下储气库CO2作垫层气研究现状[J]. 应用化工, 2023, 52(8): 2387-2391;2396.

    DU S Y, BAI M X, ZHANG Z C, et al. Research status of CO2 as cushion gas in underground natural gas storage[J]. Applied Chemical Industry, 2023, 52(8): 2387-2391;2396.
    [10]
    曹洪源, 柏明星, 杜思宇, 等. 关井阶段CO2作储气库垫层气的动态影响规律[J]. 石油与天然气化工, 2024, 53(3): 37-42. doi: 10.3969/j.issn.1007-3426.2024.03.007

    CAO H Y, BAI M X, DU S Y, et al. Dynamic influence law of CO2 used as cushion gas in gas storage during shut-in period[J]. Chemical Engineering of Oil & Gas, 2024, 53(3): 37-42. doi: 10.3969/j.issn.1007-3426.2024.03.007
    [11]
    谭羽非, 牛传凯. CO2用作低渗透裂缝性气藏储气库垫层气的扩容分析[J]. 天然气工业, 2016, 36(7): 48- 56.

    TAN Y F, NIU C K. Capacity expansion analysis of UGSs rebuilt from low-permeability fractured gas reservoirs with CO2 as cushion gas[J]. Natural Gas Industry, 2016, 36(7): 48-56.
    [12]
    张杰城, 杜鑫芳, 赫文豪, 等. 热-流耦合与热-流-固耦合作用下的水气交替及间歇注入对咸水层CO2溶解封存的影响[J]. 华南师范大学学报(自然科学版), 2024, 56(1): 9-17. doi: 10.6054/j.jscnun.2024002

    ZHANG J C, DU X F, HE W H, et al. Impact of water alternating gas and intermittent injection on CO2 dissolution during CO2 sequestration in saline aquifers considering thermal-hydraulic coupling and thermal-hydraulic- mechanical coupling effects[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 9-17. doi: 10.6054/j.jscnun.2024002
    [13]
    胡书勇, 胡欣芮, 李勇凯, 等. 枯竭气藏型储气库CO2作垫气的可行性研究[J]. 油气藏评价与开发, 2018, 8(5): 56-59.

    HU S Y, HU X R, LI Y K, et al. Feasibility analysis about taking CO2 as cushion gas for gas storage rebuilt upon depleted gas reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2018, 8(5): 56-59.
    [14]
    HE Y W, XIE Y X, TANG Y, et al. Estimation of underground hydrogen storage capacity in depleted gas reservoirs using CO2 as cushion gas[J]. Applied Energy, 2024, 375: 124093.
    [15]
    OLDENBURG C M. Carbon dioxide as cushion gas for natural gas storage[J]. Energy & Fuels, 2003, 17(1): 240-246.
    [16]
    李勇凯. 枯竭气藏型储气库CO2作垫气混气现象及敏感性参数分析[D]. 成都: 西南石油大学, 2017.

    LI Y K. The impact of reservoir properties and operating conditions on mixing of CO2 cushion and natural gas in storage reservoirs[D]. Chengdu: Southwest Petroleum University, 2017.
    [17]
    胡书勇, 李勇凯, 王梓蔚, 等. 枯竭油气藏型储气库用CO2作垫气的研究现状与展望[J]. 油气储运, 2016, 35(2): 130-139.

    HU S Y, LI Y K, WANG Z W, et al. Research status and prospect of depleted oil-gas reservoir storage using CO2 as the cushion gas[J]. Oil & Gas Storage and Transportation, 2016, 35(2): 130-139.
    [18]
    郑雅丽, 邱小松, 赖欣, 等. 气藏型地下储气库地质体注采运行风险分级与管控[J]. 天然气工业, 2022, 42(3): 114-119.

    ZHENG Y L, QIU X S, LAI X, et al. Risk classification and control of gas-storage geological body of gas reservoir type during injection, production and operation[J]. Natural Gas Industry, 2022, 42(3): 114-119.
    [19]
    闫萍, 靳叶军, 袁雪花, 等. 储气库运行上限压力的确定方法及在板中北储气库的应用[J]. 特种油气藏, 2024, 31(4): 81-88.

    YAN P, JIN Y J, YUAN X H, et al. Method of determining the upper limit pressure of gas storage operation and its application in the Banzhongbei gas storage[J]. Special Oil & Gas Reservoirs, 2024, 31(4): 81-88.
    [20]
    张俊法, 曾大乾, 张广权, 等. 超高压气藏改建储气库注采能力及库容评价——以川东北清溪储气库为例[J]. 断块油气田, 2021, 28(6): 775-780.

    ZHANG J F, ZENG D Q, ZHANG G Q, et al. Injection-productivity and storage capacity evaluation for rebuilding gas storage based on ultra-high pressure gas reservoir: a case study of Qingxi gas storage in Northeast Sichuan[J]. Fault-Block Oil & Gas Field, 2021, 28(6): 775-780.
    [21]
    郑得文, 胥洪成, 王皆明, 等. 气藏型储气库建库评价关键技术[J]. 石油勘探与开发, 2017, 44(5): 794-801.

    ZHENG D W, XU H C, WANG J M, et al. Key evaluation techniques in the process of gas reservoir being converted into underground gas storage[J]. Petroleum Exploration and Development, 2017, 44(5): 794-801.
    [22]
    杨志伟, 许雨桐, 王宇鹏, 等. 胜利油田储气库技术进展及发展方向[J]. 油气地质与采收率, 2024(5): 153-161.

    YANG Z W, XU Y T, WANG Y P, et al. Progress and next development directions of gas storage technologies in Shengli[J]. Oilfield Petroleum Geology and Recovery Efficiency, 2024(5): 153-161.
    [23]
    江同文, 齐桓, 王正茂, 等. 水侵气藏型储气库全周期高效建设微观模拟实验[J]. 石油勘探与开发, 2024, 51(1): 182-189.

    JIANG T W, QI H, WANG Z M, et al. Microscopic simulation experiment on efficient construction of underground gas storages converted from water-invaded gas reservoirs[J]. Petroleum Exploration and Development, 2024, 51(1): 182-189.

Catalog

    Article views (45) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return