Citation: | FENG Bin, ZHOU Jianwei, YU Tao. Investigating the Spatio-temporal Evolution and Correlation of Ecosystem Service Value and Ecological Risk amid Freeze-Thaw Cycles: A Case Study in the Eastern Region of South Qiangtang Basin[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(5): 77-90. DOI: 10.6054/j.jscnun.2024066 |
Climate change significantly impacts temperature-sensitive ecosystems like permafrost and glaciers, resulting in changes in regional ecosystem service values (ESV) and ecological risks index (ERI). To reveal the effects of climate change on ecosystem service values and potential ecological risks in typical permafrost regions of the Qinghai-Tibet Plateau, land use data from 2000 to 2020 is utilized. Methods including ESV evaluation, ERI assessment, bivariate spatial autocorrelation, and geographic detector analysis are employed to analyze the spatiotemporal evolution, spatial associations, and spatial differentiation characteristics of ESV and ERI in the eastern part of the Southern Qiangtang Basin. The findings show that: (1)From 2000 to 2020, ESV in the eastern region of the South Qiangtang Basin exhibited an upward trajectory, witnessing a cumulative increase of 5.76% (27.698 billion yuan). The primary contributors to ESV were grassland and water, contributing over 98.70% to the total va-lue. The overall distribution pattern of ESV manifested as high in the middle and low in the peripheral regions, with medium-value areas representing the central focus (the area was about 70.37% of the total area of the study area). (2) The regional trend of ERI displayed an overall increase, with a distribution pattern characterized by low values in the southeast and high values in the northwest, predominantly extremely low risk areas (the area was about 60.68% of the total area of the study area). (3) Regional ESV and ERI exhibited a negative spatial correlation (Moran's I < 0), with the primary LISA clustering identified as low value-low risk(the area was about 34.26% of the total area of the study area). (4) The spatial differentiation of regional ESV and ERI is influenced by both na-tural factors and economic factors, with NDVI emerging as the predominant factor driving their spatial divergence (q values of 0.55 and 0.19, respectively). The research results indicate that its necessary to adopt tailored ecological protection measures based on the spatiotemporal distribution and variation characteristics of ESV and ERI in the research area, in order to promote the sustainable development of the regional ecological environment.
[1] |
ZHU Q A, CHEN H, PENG C H, et al. An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau[J]. Nature Communications, 2023, 14(1): 6406/1-14.
|
[2] |
YU S W, WANG J B, RUEHLAND K M, et al. Spatial distribution of surface-sediment diatom assemblages from 45 Tibetan Plateau lakes and the development of a salinity transfer function[J]. Ecological Indicators, 2023, 155(1): 110952/1-17.
|
[3] |
YANG H J, GOU X H, XUE B, et al. Research on the change of alpine ecosystem service value and its sustainable development path[J]. Ecological Indicators, 2023, 146(1): 109893/1-14.
|
[4] |
SILES J A, MARGESIN R J M E. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the dri-ving factors? [J]. Microbial Ecology, 2016, 72(1): 207-220. doi: 10.1007/s00248-016-0748-2
|
[5] |
贾艳艳, 唐晓岚, 任宇杰. 长江流域安徽段生态系统服务价值与景观生态风险时空演变及其关联分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 31-40.
JIA Y Y, TANG X L, REN Y J. Spatial-temporal evolution and correlation analysis of ecosystem service value and landscape ecological risk in Anhui section of the Yangtze River basin[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2022, 46(3): 31-40,
|
[6] |
COSTANZA R, DE GROOT R, SUTTON P, et al. Changes in the global value of ecosystem services[J]. Global Environmental Change, 2014, 26(1): 152-158.
|
[7] |
XING L, HU M S, WANG Y. Integrating ecosystem ser-vices value and uncertainty into regional ecological risk assessment: a case study of Hubei Province, Central China [J]. Science of The Total Environment, 2020, 740: 140126/1-12.
|
[8] |
LAUTENBACH S, KUGEL C, LAUSCH A, et al. Analysis of historic changes in regional ecosystem service provisioning using land use data[J]. Ecological Indicators, 2011, 11(2): 676-687. doi: 10.1016/j.ecolind.2010.09.007
|
[9] |
LI F F, WANG F K, LIU H, et al. A comparative analysis of ecosystem service valuation methods: taking Beijing, China as a case[J]. Ecological Indicators, 2023, 154: 110872/1-11.
|
[10] |
李辉, 周启刚, 李斌, 等. 近30年三峡库区生态系统服务价值与生态风险时空变化及相关性研究[J]. 长江流域资源与环境, 2021, 30(3): 654-666.
LI H, ZHOU Q G, LI B, et al. Spatiotemporal change and correlation analysis of ecosystem service values and ecological risk in Three Gorges Reservoir Area in the past 30 years[J]. Resources and Environment in the Yangtze Basin, 2021, 30(3): 654-666.
|
[11] |
周建伟. 1980-2018年川西山区生态系统服务价值与生态风险时空演变研究[D]. 南充: 西华师范大学, 2023.
ZHOU J W. Temporal and spatial evolution of ecosystem service value and ecological risk in mountainous areas of western Sichuan from 1980 to 2018[D]. Nanchong: China West Normal University, 2023.
|
[12] |
王金枝, 颜亮, 吴海东, 等. 基于层次分析法研究藏北高寒草地退化的影响因素[J]. 应用与环境生物学报, 2020, 26(1): 17-24.
WANG J Z, YAN L, WU H D, et al. Based on analytic hierarchy process, the influencing factors of alpine grassland degradation in northern Tibet were studied[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(1): 17-24.
|
[13] |
景海超, 刘颖慧, 贺佩, 等. 青藏高原典型区生态系统服务空间异质性及其影响因素——以那曲市为例[J]. 生态学报, 2022, 42(7): 2657-2673.
JING H C, LIU Y H, HE P, et al. Spatial heterogeneity of ecosystem services and its influencing factors in typical areas of the Tibetan Plateau: a case study of Nagqu City[J]. Acta Ecologica Sinica, 2022, 42(7): 2657-2673.
|
[14] |
那曲市人民政府. 那曲市第七次全国人口普查公报[EB/OL]. (2021-07-12)[2024-01-05]. http://www.naqu.gov.cn/nqsrmzf/c100006/202107/03e3135369-5540a0b8968334ac617c5e.shtml.
|
[15] |
ZOU D F, ZHAO L, SHENG Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. Cryosphere, 2017, 11(6): 2527-2542.
|
[16] |
ZHANG X, LIU L, CHEN X, et al. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery[J]. Earth System Science Data, 2021, 13(6): 2753-2776.
|
[17] |
COSTANZA R. Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability[J]. Ecosystem Services, 2020, 43: 101096/1-13.
|
[18] |
谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8): 1243-1254.
XIE G D, ZHANG C X, ZHANG L M, et al. Improvement of the evaluation method for ecosystem service value based on per unit area[J]. Journal of Natural Resources, 2015, 30(8): 1243-1254.
|
[19] |
周建伟, 王磊, 杨海青, 等. 近20年南充市土地利用与生态系统服务价值时空变化[J]. 西华师范大学学报(自然科学版), 2023, 44(2): 121-130.
ZHOU J W, WANG L, YANG H Q, et al. Spatiotemporal changes of land use and ecosystem service value in Nanchong City in the past 20 years[J]. Journal of China West Normal University(Natural Science Edition), 2023, 44(2): 121-130.
|
[20] |
周建伟, 罗君. 干旱河谷生态服务价值与景观生态风险时空演变[J]. 人民长江, 2023, 54(4): 85-93.
ZHOU J W, LUO J. Spatio-temporal evolution of ecosystem service value and landscape ecological risk in dry va-lleys[J]. People's Yangtze River, 2023, 54(4): 85-93.
|
[21] |
李俊翰, 高明秀. 滨州市生态系统服务价值与生态风险时空演变及其关联性[J]. 生态学报, 2019, 39(21): 7815-7828.
LI J H, GAO M X. Spatial-temporal evolution and correlation between ecosystem service value and ecological risk in Binzhou City[J]. Acta Ecologica Sinica, 2019, 39(21): 7815-7828.
|
[22] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
WANG J F, XU C D. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
|
[23] |
CHEN C J, LIU Y H. Spatiotemporal changes of ecosystem services value by incorporating planning policies: a case of the Pearl River Delta, China[J]. Ecological Mo-delling, 2021, 461: 109777/1-16.
|
[24] |
JIANG W, LV Y H, LIU Y X, et al. Ecosystem service value of the Qinghai-Tibet Plateau significantly increased during 25 years[J]. Ecosystem Services, 2020, 44(10): 101146/1-10.
|
[25] |
YANG H J, GOU X H, YIN D C, et al. Research on the coordinated development of ecosystem services and well-being in agricultural and pastoral areas[J]. Journal of Environmental Management, 2022, 304: 114300/1-14.
|
[26] |
DRUCKENMILLER H. Accounting for ecosystem service values in climate policy[J]. Nature Climate Change, 2022, 12(7): 596-598.
|
[27] |
YI F, YANG Q K, WANG Z J, et al. Changes in land use and ecosystem service values of Dunhuang Oasis from 1990 to 2030[J]. Remote Sensing, 2023, 15(3): 564/1-23.
|
[28] |
ZHANG S, WANG Y, WANG Y, et al. Spatiotemporal evolution and influencing mechanisms of ecosystem ser-vice value in the Tarim River Basin, Northwest China[J]. Remote Sensing, 2023, 15(3): 591/1-18.
|
[29] |
HE Z, SHANG X, ZHANG T, et al. Coupled regulatory mechanisms and synergy/trade-off strategies of human activity and climate change on ecosystem service value in the loess hilly fragile region of northern Shaanxi, China[J]. Ecological Indicators, 2022, 143: 109325/1-14.
|
[30] |
WANG H, ZHOU S L, LI X B, et al. The influence of climate change and human activities on ecosystem service value[J]. Ecological Engineering, 2016, 87: 224-239.
|
[31] |
LYU X, LI X B, DANG D L, et al. A perspective on the impact ofgrassland degradation on ecosystem services for the purpose of sustainable management[J]. Remote Sen-sing, 2022, 14(20): 109325/1-21.
|
[32] |
YANG M H, GAO X D, SIDDIQUE K H M, et al. Spatiotemporal exploration of ecosystem service, urbanization, and their interactive coercing relationship in the Yellow River Basin over the past 40 years[J]. Science of The Total Environment, 2023, 858: 159757/1-13.
|
[33] |
YANG J, XIE B P, WANG S Y, et al. Temporal and spatial characteristics of grassland ecosystem service value and its topographic gradient effect in the Yellow River Basin[J]. PLOS ONE, 2022, 17(12): e0278211/1-16.
|
[34] |
STRATON A. A complex systems approach to the value of ecological resources[J]. Ecological Economics, 2006, 56(3): 402-411.
|
[35] |
CHENG W, SHEN B B, XIN X P, et al. Spatiotemporal variations of grassland ecosystem service value and its influencing factors in Inner Mongolia, China[J]. Agronomy, 2022, 12(9): 2090/1-23.
|
[36] |
SU C H, FU B J. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes[J]. Global and Planetary Change, 2013, 101: 119-128.
|
[37] |
KANG L, JIA Y, ZHANG S. Spatiotemporal distribution and driving forces of ecological service value in the Chinese section of the "Silk Road Economic Belt"[J]. Ecological Indicators, 2022, 141: 109074/1-11.
|
[38] |
冯彬, 胡露, 赵姗姗, 等. 同域分布中华鬣羚与中华斑羚时空生态位特征[J]. 生态学报, 2022, 42(13): 5275-5284.
FENG B, HU L, ZHAO S S, et al. Spatiotemporal niche characteristics of Chinese serow and Chinese impala in the same area[J]. Acta Ecologica Sinica, 2022, 42(13): 5275-5284.
|
[39] |
PENG J, TIAN L, LIU Y X, et al. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification[J]. Science of The Total Environment, 2017, 607: 706-714.
|