• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
MIAO Lei, WANG Lei, CHEN Dongchu. Proton Exchange Performance of Microfibrillar Cellulose/Lignin Sulfonate Composite Membrane[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(5): 35-42. DOI: 10.6054/j.jscnun.2024062
Citation: MIAO Lei, WANG Lei, CHEN Dongchu. Proton Exchange Performance of Microfibrillar Cellulose/Lignin Sulfonate Composite Membrane[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(5): 35-42. DOI: 10.6054/j.jscnun.2024062

Proton Exchange Performance of Microfibrillar Cellulose/Lignin Sulfonate Composite Membrane

More Information
  • Received Date: June 19, 2024
  • The article proposed a "micro-dissolution-welding" strategy tailored for microfibrillar cellulose (MFC). MFC was "micro-dissolved" in Urea/NaOH solution and the MFC fibers were "welded" together in coagulation bath, resulting in the formation of an MFC/lignosulfonate composite membrane. The mechanical properties, swelling behavior, and proton transport properties of this composite membrane in moisture environment were investigated. The mechanical strength and the the young's modulus of the resultant MFC/lignosulfonate composite membrane are 3.7±0.2 MPa and 58.6±3.9 MPa, respectively. The water absorption and planer swelling ratio of the composite membrane in water are (82±1)% and (13±2)%, respectively. The proton conductivity of the composite membrane at 80 ℃ reaches 0.056 S/cm, and its methanol permeability coefficient is 2.86×10-6 cm2/s. The proposed "micro-dissolution-welding" strategy has promising applications in the field of cellulose-based functional membranes.

  • [1]
    高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555.

    GAO W, LEI Y, ZHANG X, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555.
    [2]
    刘洁, 王菊香, 邢志娜, 等. 燃料电池研究进展及发展探析[J]. 节能技术, 2010, 28(4): 364-368. doi: 10.3969/j.issn.1002-6339.2010.04.019

    LIU J, WANG J, XING Z, et al. The Investigationon research progres sand development of fuel cell[J]. Energy Conservation Technology, 2010, 28(4): 364-368. doi: 10.3969/j.issn.1002-6339.2010.04.019
    [3]
    PEIGHAMBARDOUST S J, ROWSHANZAMIR S, AMJADI M. Review of the proton exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy, 2010, 35: 9349-9384. doi: 10.1016/j.ijhydene.2010.05.017
    [4]
    曹宁, 李凯, 王志彦, 等. 阻醇燃料电池质子交换纳米复合膜研究进展[J]. 中国塑料, 2022, 36(12): 142-154.

    CAO N, LI K, WANG Z, et al. Progress in proton-exchange nanocomposite films for alcohol-resistant fuel cells[J]. China Plastics, 2022, 36(12): 142-154.
    [5]
    童鑫, 熊哲, 高新宇, 等. 质子交换膜燃料电池研究现状及发展[J]. 硅酸盐通报, 2022, 41(9): 3243-3258.

    TONG X, XIONG Z, GAO X Y, et al. Research status and development of proton exchange membrane fuel cell[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3243-3258.
    [6]
    PRYKHODKO Y, FATYEYEVA K, HESPEL L, et al. Progress in hybrid composite Nafion-based membranes for proton exchange fuel cell application[J]. Chemical Engineering Journal, 2021, 409: 127329/1-18.
    [7]
    NISHINO T, MATSUDA I, HIRAO K. All-cellulose composite[J]. Macromolecules, 2004, 37(20): 7683-7687. doi: 10.1021/ma049300h
    [8]
    VILELA C, SILVESTRE A J D, FIGUEIREDO F M L, et al. Nanocellulose-based materials as components of polymer electrolyte fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(35): 20045-20074. doi: 10.1039/C9TA07466J
    [9]
    BAYER T, CUNNING B V, SELYANCHYN R, et al. High temperature proton conduction in nanocellulose membranes: paper fuel cells[J]. Chemistry of Materials, 2016, 28(13): 4805-4814. doi: 10.1021/acs.chemmater.6b01990
    [10]
    GUCCINI V, CARLSON A, YU S, et al. Highly proton conductive membranes based on carboxylated cellulose nanofibres and theirperformance in proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2019, 43(7): 25032-25039. http://www.xueshufan.com/publication/3203023934
    [11]
    VILELA C, MORAIS J D, SILVA A C Q, et al. Flexible nanocellulose/lignosulfonates ion-conducting separators for polymer electrolyte fuel cells[J]. Nanomaterials(Basel), 2020, 10(9): 1713/1-14. http://doc.paperpass.com/foreign/rgArti20202785928.html
    [12]
    SRIRUANGRUNGKAMOL A, CHONKAEW W. Modification of nanocellulose membrane by impregnation method with sulfosuccinic acid for direct methanol fuel cell applications[J]. Polymer Bulletin, 2021, 78(7): 3705-3728. doi: 10.1007/s00289-020-03289-y
    [13]
    GADIM T D O, FIGUEIREDO A G P R, ROSERO-NAVARRO N C, et al. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7864-7875. http://www.xueshufan.com/publication/2335056938
    [14]
    BAYER T, CUNNING B V, SMID B, et al. Spray deposition of sulfonated cellulose nanofibers as electrolyte membranes in fuel cells[J]. Cellulose, 2021, 28(3): 1355-1367. doi: 10.1007/s10570-020-03593-w
    [15]
    DOUGLASS E F, AVCI H, BOY R, et al. A review of cellulose and cellulose blends for preparation of bio-derived and conventional membranes, nanostructured thin films, and composites[J]. Polymer Reviews, 2018, 58(1): 102-163.
    [16]
    SIRO I, PLACKETT D. Microfibrillated cellulose and new nanocomposite materials: a review[J]. Cellulose, 2010, 17: 459-494. http://diyhpl.us/~bryan/papers2/paperbot/Microfibrillated%20cellulose%20and%20new%20nanocomposite%20materials%3A%20a%20review.pdf
    [17]
    PAWEŁ GRZYBEK P, DUDEK G, van der BRUGGEN B. Cellulose-based films and membranes: a comprehensive review on preparation and applications[J]. Chemical Engineering Journal, 2024, 495: 153500/1-18.
    [18]
    SAMANIEGO A J, ESPIRITU R. Prospects on utilization of biopolymer materials for ion exchange membranes in fuel cells[J]. Green Chemistry Letters and Reviews, 2022, 15(1): 253-275. http://www.socolar.com/Article/Index?aid=100093136756&jid=100000004141
    [19]
    李鑫, 游婷婷, 许杜鑫, 等. 新型溶剂体系下纤维素溶解机理研究进展[J]. 林产化学与工业, 2020, 40(5): 1-9.

    LI X, YOU T, XU D, et al. Research progress on dissolution mechanism of cellulose in novel solvent systems[J]. Chemistry and Industry of Forest Products, 2020, 40(5): 1-9.
    [20]
    HU F, HU Y, ZHANG L, et al. Preparation and characterization of self-reinforced paper using NaOH/thiourea aqueous solution at room temperature[J]. Bioresources, 2020, 15(4): 8191-8201.
    [21]
    WU D, LI L, WANG Y, et al. Localized liquefaction coupled with rapid solidification for miniaturizing/nanotexturizing microfibrous bioassemblies into robust, liquid-resistant sheet[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15697-15707. http://www.zhangqiaokeyan.com/journal-foreign-detail/0704022447384.html
    [22]
    NECHYPORCHUK O, BELGACEM M N, BRAS J. Production of cellulose nanofibrils: a review of recent advances[J]. Industrial Crops and Products, 2016, 93: 2-25.
    [23]
    CAI L, LIU Y, LIANG H. Impact of hydrogen bonding on inclusion layer of urea to cellulose: study of molecular dynamics simulation[J]. Polymer, 2012, 53(5): 1124-1130. http://www.onacademic.com/detail/journal_1000035078901410_092f.html
    [24]
    TU H, ZHU M, DUAN B, et al. Recent progress in high-strength and robust regenerated cellulose materials[J]. Advanced Materials, 2021, 33(28): e2000682/1-22.
    [25]
    ZHANG S, FU C F, LI F, et al. Direct preparation of a novel membrane from unsubstituted cellulose in NaOH complex solution[J]. Iranian Polymer Journal, 2009, 18(10): 767-776. http://www.sid.ir/en/VEWSSID/J_pdf/81320091001.pdf
    [26]
    NELSON M L, O'CONNOR R T. Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose[J]. Journal of Applied Polymer Science, 1964, 8(3): 1311-1324. http://www.semanticscholar.org/paper/ba7b056095063581f473528143752659d38515eb
    [27]
    LI R, WANG S, LU A, et al. Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature[J]. Cellulose, 2015, 22(1): 339-349.
    [28]
    FRENCH A D. Idealized powder diffraction patterns for cellulose polymorphs[J]. Cellulose, 2014, 21(2): 885-896. doi: 10.1007%2Fs10570-013-0030-4.pdf
    [29]
    IWAI Y, HIROKI A, TAMADA M. Radiation-induced crosslinking of Nafion N117CS membranes[J]. Journal of Membrane Science, 2011, 369: 397-403.
    [30]
    KESHK S. Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate[J]. Enzyme and Microbial Technology, 2006, 40(1): 9-12.
    [31]
    HAN D, YAN L. Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution[J]. Carbohydrate Polymers, 2010, 79(3): 614-619.
    [32]
    VILELA C, SILVA A C Q, DOMINGUES E M, et al. Conductive polysaccharides-based proton-exchange membranes for fuel cell applications: the case of bacterial cellulose and fucoidan[J]. Carbohydrate Polymers, 2020, 230: 115604/1-22.
    [33]
    ABURABIE J, LALIA B, HASHAIKEH R. Proton conductive, low methanol crossover cellulose-based membranes[J]. Membranes, 2021, 11(7): 539-554.
    [34]
    SEO J A, KIM J C, KOH J K, et al. Preparation and characterization of crosslinked cellulose/sulfosuccinic acid membranes as proton conducting electrolytes[J]. Ionics, 2009, 15(5): 555-560.
    [35]
    JIANG G P, QIAO J L, HONG F. Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC[J]. International Journal of Hydrogen Energy, 2012, 37(11): 9182-9192.
    [36]
    SARI A K, YUNUS R M, MAJLAN E H, et al. Nata de cassava type of bacterial cellulose doped with phosphoric acid as a proton exchange membrane[J]. Membranes, 2023, 13(1): 43/1-12.
    [37]
    GADIM T D O, LOUREIRO F J A, VILELA C, et al. Protonic conductivity and fuel cell tests of nanocomposite membranes based on bacterial cellulose[J]. Electrochimica Acta, 2017, 233: 52-61.
    [38]
    NAGASAKA M, YUZAWA H, KOSUGI N. Microheterogeneity in aqueous acetonitrile solution probed by soft X-ray absorption spectroscopy[J], The Journal of Physical Chemistry B, 2020, 124(7): 1259-1265.
    [39]
    SELYANCHYN O, SELYANCHYN R, LYTH S M. A review of proton conductivity in cellulosic materials[J]. Frontiers in Energy Research, 2020, 8: 596164/1-17.
    [40]
    LI Y, HUI J, KAWCHUK J, et al. Composite membranes of PVDF nanofibers impregnated with nafion for increased fuel concentrations in direct methanol fuel cells[J]. Fuel Cells, 2019, 19(1): 43-50.

Catalog

    Article views (46) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return