• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Lei, YU Haiyang, HUANG Tao, TANG Huiting, SUN Linghui, ZENG Huake, WANG Yang. Factors Influencing CO2 Huff-and-Puff for Increasing Its Storage Capacity and Shale Oil Recovery[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(5): 16-26. DOI: 10.6054/j.jscnun.2024060
Citation: ZHANG Lei, YU Haiyang, HUANG Tao, TANG Huiting, SUN Linghui, ZENG Huake, WANG Yang. Factors Influencing CO2 Huff-and-Puff for Increasing Its Storage Capacity and Shale Oil Recovery[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(5): 16-26. DOI: 10.6054/j.jscnun.2024060

Factors Influencing CO2 Huff-and-Puff for Increasing Its Storage Capacity and Shale Oil Recovery

More Information
  • Received Date: April 14, 2024
  • For clarifying the effect of shale oil CO2 huff-puff on recovery and storage, the nuclear magnetic resonance (NMR) device was employed to conduct huff-puff experiments, investigating the effects of formation pressure, huff-puff cycles, soaking time and core permeability on the role of shale oil CO2 huff-puff. The results demonstrate that under miscible conditions, the increase in recovery form macropores and mesopores decreases with increasing formation pressure, the increase in recovery from macropores and mesopores rises rapidly under non-miscible conditions, while the recovery from micropores always rises linearly with increasing formation pressure. The improvement of CO2 huff-puff recovery is more significant when the formation pressure is lower than the minimum miscible pressure, while the improvement of huff-puff recovery is weaker when the formation pressure is higher than the miscible pressure. The recovery enhancement rate of large and mesopores slows down during soaking time, while the recovery enhancement rate of micropores was on a trend of increasing and then decreasing; When the number of throughput rounds increases, the recovery enhancement of mesopores and puffs are more significant, while the increase of micropores is relatively small; the formation pressure is positively correlated with the huff-puff effect, and the number of huffs-puffs decreases with the increase of pressure; The greater the permeability of the core, the higher the pore recovery. This investigation is a guideline for improving the recovery of shale oil CO2 huff-puff and effectively implementing storage.

  • [1]
    黄千慧, 李海波, 杨正明, 等. 页岩(致密)油藏注CO2吞吐作用距离实验[J]. 大庆石油地质与开发, 2022, 25(2): 1-8.

    HUANG Q H, LI X B, YANG Z M, et al. Experiment on CO2 injection huff and puff distance in shale(tight) oil reservoirs[J]. Petroleum Geology and Development in Daqing, 2022, 25(2): 1-8.
    [2]
    刘客, 张驰. 裂缝作用下CO2吞吐动用基质页岩油特征[J]. 大庆石油地质与开发, 2024, 25(2): 3-20.

    LI K, ZHANG C. Characteristics of CO2 huff and puff producing matrix shale oil effected by fractures[J]. Petroleum Geology and Development in Daqing, 2024, 25(2): 3-20.
    [3]
    李艳明, 刘静, 张棚, 等. 鄯善油田特高含水期CO2吞吐增油与埋存试验[J]. 新疆石油地质, 2023, 44(3): 327-333.

    LI Y M, LIU J, ZHANG P, et al. CO2 huff-n-puff storage test in extra-high water cut stage in Shanshan oilfield[J]. Petroleum Geology of Xinjing, 2023, 44(3): 327-333.
    [4]
    杨明, 薛程伟, 李朝阳, 等. 页岩油CO2吞吐影响因素及微观孔隙动用特征[J]. 大庆石油地质与开发, 2023, 42(4): 148-156.

    YANG M, XUE C W, LI C Y, et al. Influencing factors of CO2 huff and puff and micro-pores producing characteristics of shale oil[J]. Petroleum Geology and Development in Daqing, 2023, 42(4): 148-156.
    [5]
    黄兴, 李响, 张益, 等. 页岩油储集层二氧化碳吞吐纳米孔隙原油微观动用特征[J]. 石油勘探与开发, 2022, 49(3): 557-564.

    HUANG X, LI X, ZHANG Y, et al. Microscopic production characteristics of crude oil in nano-pores of shale oil reservoirs during CO2 huff and puff[J]. Petroleum Exploration and Development, 2022, 49(3): 557-564.
    [6]
    李凤霞, 王海波, 周彤, 等. 页岩油储层裂缝对CO2吞吐效果的影响及孔隙动用特征[J]. 石油钻探技术, 2022, 50(2): 38-44.

    LI F X, WANG H B, ZHOU T, et al. The influencing of fractures in shale oil reservoirs on CO2 huff and puff and its pore production characteristics[J]. Oil Drilling Technology, 2022, 50(2): 38-44.
    [7]
    贾瑞轩, 孙灵辉, 苏致新, 等. 二氧化碳吞吐致密油藏的可动用性[J]. 石油钻探技术, 2020, 27(4): 504-508.

    JIA R X, SUN L K, SU Z X, et al. Availability of CO2 huff and puff in tight reservoir[J]. Oil Drilling Technology, 2020, 27(4): 504-508.
    [8]
    贾昊卫, 于海洋, 谢非矾, 等. CO2微气泡溶解动力学及提高采收率机理研究[J]. 力学学报, 2023, 55(3): 755-764.

    JIA H W, YU H Y, XIE F F, et al. Research on CO2 microbubble dissolution kinetics and enhanced oil recovery mechanisms[J]. Chinese Journal of Mechanics, 2023, 55(3): 755-764.
    [9]
    LIU Y, RUI Z. A storage-driven CO2 EOR for a net-zero emission target[J]. Engineering, 2022, 18: 79-87. doi: 10.1016/j.eng.2022.02.010
    [10]
    WEI Y T, TING X J. Further discussion of CO2 huff-n-puff mechanisms in tight oil reservoirs based on NMR monitored fluids spatial distributions[J]. Petroleum Science, 2023, 20(1): 350-361.
    [11]
    ZHU C, GUO W, WANG Y. Experimental study of enhanced oil recovery by CO2 huff-n-puff in shales and tight sandstones with fractures[J]. Petroleum Science, 2020, 36(20): 1-18.
    [12]
    WANG B, ZHANG M Y, GUO K. Oil recovery and compositional change of CO2 huff-n-puff and continuous injection modes in a variety of dual-permeability tight matrix-fracture models[J]. Fuel, 2020, 276: 117939/1-11.
    [13]
    ZHANG Z M, CHAO F, RUI Q. Experimental and molecular insights on mitigation of hydrocarbon sieving in Niobrara Shale by CO2 Huff-n-Puff[J]. SPE Journal, 2020, 25(4): 1803-1811.
    [14]
    CHENG Y Q, AHAMD S, ZHANG L P. Geochemicalinsights for CO2 huff-n-puff process in shale oil reservoirs[J]. Journal of Molecular Liquids, 2020, 307: 112992/1-7.
    [15]
    RAZIPERCHIKOLAEE S, MISHRA S. Numerical simulation of CO2 huff and huff feasibility for light oil reservoirs in the appalachian basin: sensitivity study and history match of a CO2 pilot test[J]. Energy & Fuels, 2019, 33(11): 10795-10811.
    [16]
    杨明, 贾焱, 黄熙. 页岩微纳孔隙流体分布及CO2吞吐动用特征[J]. 西安石油大学学报(自然科学版), 2024, 8(4): 1-9.

    YANG M, JIA Y, HUANG X. Fluid distribution and CO2 huff and puff in shale micro-nano pores[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2024, 8(4): 1-9.
    [17]
    宋平, 崔晨光, 张记刚. 玛湖凹陷上乌尔禾组强敏感油藏CO2同步吞吐试验[J]. 新疆石油地质, 2024(3): 355-361.

    SONG P, CUI C G, ZHANG J G. CO2 simultaneous huff and puff test of highly sensitive reservoir in Upper Wuerhe Formation, Mahu Sag[J]. Petroleum Geology of Xinjiang, 2024(3): 355-361.
    [18]
    DING M, WANG Y, WANG Y. Experimental investigation of bypassed-oil recovery via CO2 soaking and huff and puff injection: effects of miscibility and bypassed-oil size[J]. Fuel, 2019, 2(48): 152-160.
    [19]
    黄兴, 倪军, 李响, 等. 致密油藏不同微观孔隙结构储层CO2驱动用特征及影响因素[J]. 石油学报, 2020, 41(7): 853-864.

    HUANG X, NI J, LI X. Characteristics and influencing factors of CO2 flooding in different microscopic pore structures in tight reservoirs[J]. Journal of Petroleum, 2020, 41(7): 853-864.
    [20]
    王千, 杨胜来, 拜杰, 等. CO2驱油过程中孔喉结构对储层岩石物性变化的影响[J]. 石油学报, 2021, 42(5): 654-668;685.

    WANG Q, YANG S L, BAI J. Influencing of pore throat structure on changes in physical properties of reservoir rock during CO2 flooding[J]. Journal of Petroleum, 2021, 42(5): 654-668;685.
    [21]
    胡永乐, 郝明强, 陈国利, 等. 中国CO2驱油与埋存技术及实践[J]. 石油勘探与开发, 2019, 46(4): 716-727.

    HU Y L, HAO M Q, CHEN G L. Technologies and practice of CO2 flooding and sequestration in China[J]. Petroleum Exploration and Development, 2019, 46(4): 716-727.
    [22]
    钱坤, 杨胜来, 窦洪恩, 等. 注CO2过程中流体性质变化及驱油机理实验研究[J]. 石油科学通报, 2019, 4(1): 69-82.

    QIAN K, YANG S L, DOU H E. Interaction of the CO2-oil system and displacement mechanisms during CO2 flooding [J]. Petroleum Science Bulletin, 2019, 4(1): 69-82.
    [23]
    陈欢庆. CO2驱油与埋存技术新进展[J]. 油气地质与采收率, 2023, 30(2): 18-26.

    CHEN H Q. New progress of CO2 flooding and storage technology[J]. Oil and Gas Geology and Recovery, 2023, 30(2): 18-26.
    [24]
    侯大力, 龚凤鸣, 陈涛, 等. 低渗透油藏注CO2混相驱及CO2埋存评价[J]. 大庆石油地质与开发, 2024, 43(1): 59-67.

    HOU D L, GONG F M, CHEN T, et al. Evaluation of CO2 miscible flooding and CO2 storage in low permeability reservoir[J]. Petroleum Geology and Development in Daqing, 2024, 43(1): 59-67.
    [25]
    王欢, 季秉玉, 赵淑霞, 等. 复杂断块致密油藏CO2驱油和埋存可行性研究[J]. 陕西科技大学学报, 2022, 40(3): 115-122;151.

    WANG H, JI B Y, ZHAO S X, et al. Feasibility study on the CO2 flooding and storage in the complex fault-block tight oil reservoirs[J]. Journal of Shaanxi University of Science and Technology, 2022, 40(3): 115-122;151.
    [26]
    郝永卯, 韦林. 不同驱油方式CO2微观分布特征及埋存量研究[J]. 天然气地球科学, 2017, 28(6): 846-851.

    HE Y M, WEI L. Researchon the microscopic distribution characteristics and storage capacity of CO2 with different displacement methods[J]. Natural Gas Geoscience, 2017, 28(6): 846-851.
    [27]
    史云清, 贾英, 潘伟义, 等. 致密低渗透气藏注CO2提高采收率潜力评价[J]. 天然气工业, 2017, 37(3): 62-69.

    SHI Y Q, JIA Y, PAN W Y, et al. Potential evaluation on CO2-EGR in tight and low permeability reservoirs[J]. Natural Gas Industry, 2017, 37(3): 62-69.
    [28]
    TANG M, WANG C, YANG H, et al. Experimental investigation on plugging performance of nanospheres in low-permeability reservoir with bottom water[J]. Advances in Geo-Energy Research, 2022, 6(2): 95-103.
    [29]
    LIU Y, HU T, RUI Z, et al. An integrated framework for geothermal energy storage with CO2 sequestration and utilization[J]. Engineering, 2023, 30: 121-130.
    [30]
    SYED F I, MUTHER T, VAN V P, et al. Numerical trend analysis for factors affecting EOR performance and CO2 storage in tight oil reservoirs[J]. Fuel, 2022, 316: 123370/1-11.
    [31]
    WU R, BO W, LI S, et al, Enhanced oil recovery in complex reservoirs: challenges and methods[J]. Advances in Geo-Energy Research, 2023, 10(3): 208-212.
  • Cited by

    Periodical cited type(2)

    1. 蔚燕舞,郭润平. 双创背景下基于SVM的虚拟装配系统装配性能分析预测研究. 自动化与仪器仪表. 2025(01): 201-205 .
    2. 曾秋玮,胡兆勇,王志乐,张锐林,邹刚. 面向航空发动机的虚拟多人拆装任务的驱动方法. 系统仿真学报. 2024(01): 220-231 .

    Other cited types(1)

Catalog

    Article views (46) PDF downloads (13) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return