• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LIAN Wei, WANG Nenghao, LI Jun, LI Qixuan. Research Progress on CO2 Geological Storage Leakage Mechanism and Wellbore Integrity[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(5): 1-15. DOI: 10.6054/j.jscnun.2024059
Citation: LIAN Wei, WANG Nenghao, LI Jun, LI Qixuan. Research Progress on CO2 Geological Storage Leakage Mechanism and Wellbore Integrity[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(5): 1-15. DOI: 10.6054/j.jscnun.2024059

Research Progress on CO2 Geological Storage Leakage Mechanism and Wellbore Integrity

More Information
  • Received Date: June 05, 2024
  • Carbon Capture, Utilization and Storage(CCUS) is the key technology to achieve carbon emission reduction. Due to the influence of formation conditions and long-term storage characteristics, there is a risk of CO2 leakage during geological storage. Based on the investigation of domestic and foreign literature, the research progress of CCUS sequestration leakage is reviewed. CO2 is mainly sequestration in geological bodies through structural sequestration, residual gas sequestration, dissolution sequestration and mineral sequestration. Under the conditions of injection and storage, the leakage channels can be summarized as wellbore leakage, cap penetration and diffusion, and fault leakage. Among them, the main causes of wellbore integrity failure are micro-annulus in the first cementing surface caused by the sudden drop in wellbore temperature during injection and chemical corrosion during long-term wellbore service. The local high pressure caused by the accumulation of CO2 at the bottom of the cap layer due to buoyancy will lead to the infiltration and diffusion of CO2 along the cap layer. The change of reservoir stress state after injection and the activation fault caused by water-rock chemical reaction are the main channels for leakage along the fault. Leakage hazards include human health threats and ecological environment impacts. Leakage monitoring methods are divided into three categories: underground, near-surface and atmosphere. Research on CCUS wellbore leakage is very limited at present, especially the quantitative research on the failure mechanism, influencing factors and control methods of wellbore seal integrity in injection wells.

  • [1]
    International Energy Agency. CO2 Emissions in 2023[R]. (2024-02) [2024-03]. https://www.iea.org/reports/CO2-emissions-in-20222023.
    [2]
    王灿, 蔡闻佳, 张诗卉, 等. 2023全球碳中和年度进展报告[R]. 北京: 清华大学环境学院碳中和研究院, 2023.
    [3]
    习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报, 2022-09-23(3).
    [4]
    FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W, et al. Global carbon budget 2022[J]. Earth System Science Data, 2022, 14: 4811-4900. doi: 10.5194/essd-14-4811-2022
    [5]
    International Energy Agency. Statistical Review of World Energy[R]. (2024-05)[2024-06]. https://www.energyinst.org/statistical-review.
    [6]
    吕清刚, 柴祯. "双碳"目标下的化石能源高效清洁利用[J]. 中国科学院院刊, 2022, 37(4): 541-548.

    LV Q G, CHAI Z. Efficient and clean utilization of fossil energy under the goal of "dual carbon" [J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 541-548.
    [7]
    National Petroleum Council. Meeting the dual challenge: a roadmap to atscale deployment of carbon capture, use, and storage[R]. Washington: National Petroleum Council, 2019.
    [8]
    International Energy Agency. Energy technology perspectives 2020: Special report on carbon capture, utilization and storage[R]. Paris: International Energy Agency, 2020.
    [9]
    Intergovernmental Panel on Climate Change. Climate Change 2014[M]. Cambridge: Cambridge University Press, 2014.
    [10]
    TAKASE K, BARHATE Y, HASHIMOTO H, et al. Cement-sheath wellbore integrity for injection and storage wells[C]//SPE Oil and Gas India Conference and Exhibition. Mumbai: [s. n. ], 2010.
    [11]
    BOYD A D, LIU Y, STEPHENS J C, et al. Controversy in technology innovation: contrasting media and expert risk perceptions of the alleged leakage at the Weyburn carbon storage dioxide demonstration project[J]. International Journal of Greenhouse Gas Control, 2013, 14: 259-269. doi: 10.1016/j.ijggc.2013.01.011
    [12]
    ZHANG K, XIE J, LI C, et al. A full chain CCS demonstration project in northeast Ordos Basin, China: operational experience and challenges[J]. International Journal of Greenhouse Gas Control, 2016, 50: 218-230. doi: 10.1016/j.ijggc.2016.04.025
    [13]
    BACHU S. CO2 storage in geological media: role, means, status and barriers to deployment[J]. Progress in Energy and Combustion Science, 2008, 34(2): 254-273. doi: 10.1016/j.pecs.2007.10.001
    [14]
    NORDBOTTEN J M, CELIA M A, BACHU S, et al. Semianalytical solution for CO2 leakage through an abandoned well[J]. Environmental Science & #38; Technology, 2005, 39(2): 602-611.
    [15]
    ZHAO R, CHENG J, ZHANG K. CO2 plume evolution and pressure buildup of large-scale CO2 injection into saline aquifers in Sanzhao Depression, Songliao Basin, China[J]. Transport in Porous Media, 2012, 95(2): 407-424. doi: 10.1007/s11242-012-0052-7
    [16]
    任韶然, 李德祥, 张亮, 等. 地质封存过程中CO2泄漏途径及风险分析[J]. 石油学报, 2014, 35(3): 591-601.

    REN S R, LI D X, ZHANG L, et al. Leakage pathways and risk analysis of CO2 in geological storage processes[J]. Acta Petrolei Sinica, 2014, 35(3): 591-601.
    [17]
    UMAR B A, GHOLAMI R, DOWNEY W S, et al. A novel approach to determine across-fault leakage in CO2 reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106137/1-9.
    [18]
    VILARRASA V, BOLSTER D, OLIVELLA S, et al. Coupled hydromechanical modeling of CO2 sequestration in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 2010, 4(6): 910-919. doi: 10.1016/j.ijggc.2010.06.006
    [19]
    ORLIC B. Some geomechanical aspects of geological CO2 sequestration[J]. KSCE Journal of Civil Engineering, 2009, 13(4): 225-232. doi: 10.1007/s12205-009-0225-2
    [20]
    YIN S, DUSSEAULT M B, ROTHENBURG L. Coupled THMC modeling of CO2 injection by finite element methods[J]. Journal of Petroleum Science and Engineering, 2012, 80(1): 53-60.
    [21]
    ISAKA B L A, RANJITH P G, WANNIARACHCHI W A M, et al. Investigation of the aperture-dependent flow characteristics of a supercritical carbon dioxide-induced fracture under high-temperature and high-pressure conditions: a numerical study[J]. Engineering Geology, 2020, 23(7): 105789/1-11.
    [22]
    张志雄, 谢健, 戚继红, 等. 地质封存二氧化碳沿断层泄漏数值模拟研究[J]. 水文地质工程地质, 2018, 45(2): 109-116.

    ZHANG Z X, XIE J, QI J H, et al. Numerical simulation study on leakage of carbon dioxide along faults during geological storage[J]. Hydrogeology & #38; Engineering Geology, 2018, 45(2): 109-116.
    [23]
    刘斌, 崔勇, 袁红旗, 等. 分层注入下CO2沿断层泄漏的影响因素分析[J]. 能源与环保, 2023, 45(11): 131-139.

    LIU B, CUI Y, YUAN H Q, et al. Analysis of factors influencing CO2 leakage along faults under stratified injection[J]. China Energy and Environmental Protection, 2023, 45(11): 131-139.
    [24]
    ESPINOZA D N, KIM S H, SANTAMARINA J C. CO2 geological storage-geotechnical implications[J]. KSCE Journal of Civil Engineering, 2005, 32(3): 221-237.
    [25]
    ORLIC B, HEEGE J T, WASSING B. Assessing the integrity of fault-and top seals at CO2 storage sites[J]. Energy Procedia, 2011, 4(1): 4798-4805.
    [26]
    WASCH L, KOENEN M. Injection of a CO2-reactive solution for wellbore annulus leakage remediation[J]. Minerals, 2019, 9(10): 645/1-8.
    [27]
    程阳. 气体静压节流器微流场焦耳-汤姆逊效应的研究[D]. 杭州: 中国计量学院, 2015.
    [28]
    PRUESS K. Modeling CO2 leakage scenarios, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2[J]. Energy Procedia, 2011: 3754-3761.
    [29]
    OLDENBURG C M. Joule-thomson cooling due to CO2 injection into natural gas reservoirs[J/OL]. Lawrence Berkeley National Laboratory. Lawrence Berkeley National Laboratory, 2006, 48(6): 1808-1815.
    [30]
    PRUESS K. Leakage of CO2 from geologic storage: role of secondary accumulation at shallow depth[J]. International Journal of Greenhouse Gas Control, 2008, 2(1): 37-46. doi: 10.1016/S1750-5836(07)00095-3
    [31]
    YAMAMOTO H, ZHANG K, KARASAKI K, et al. Large-scale numerical simulation of CO2 geologic storage and its impact on regional groundwater flow: a hypothetical case study at Tokyo Bay, Japan[J]. Energy Procedia, 2009, 1: 1871-1878. doi: 10.1016/j.egypro.2009.01.244
    [32]
    曹默雷, 陈建平. CO2深部咸水层封存选址的地质评价[J]. 地质学报, 2022, 96(5): 1868-1882.

    CAO M L, CHEN J P. Geological evaluation of CO2 storage site selection in deep saline aquifers [J]. Acta Geologica Sinica, 2022, 96(5): 1868-1882.
    [33]
    郝术仁. 泥岩盖层对CO2圈闭的细观性特征及模型研究[D]. 长春: 吉林大学, 2019.
    [34]
    SONG J, ZHANG D. Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration[J]. Environmental Science & Technology, 2013, 47(1): 9-22.
    [35]
    崔传智, 李惊鸿, 吴忠维, 等. CO2封存中盖层突破压力计算与分析[J]. 油气藏评价与开发, 2023, 13(3): 322-329.
    [36]
    张璐, 国建英, 林潼, 等. 碳酸盐岩盖层突破压力的影响因素分析[J]. 石油实验地质, 2021, 43(3): 461-467.
    [37]
    XIE J, ZHANG K, HU L, et al. Field-based simulation of a demonstration site for carbon dioxide sequestration in low-permeability saline aquifers in the Ordos Basin, China[J]. Hydrogeology Journal, 2015, 23(7): 1465-1480.
    [38]
    吕延防, 付广, 于丹. 中国大中型气田盖层封盖能力综合评价及其对成藏的贡献[J]. 石油与天然气地质, 2005(6): 742-745.
    [39]
    陈博文, 王锐, 李琦, 等. CO2地质封存盖层密闭性研究现状与进展[J]. 高校地质学报, 2023, 29(1): 85-99.

    CHEN B W, WANG R, LI Q, et al. Research status and progress of sealing performance of CO2 geological storage caprock[J]. Geological Journal of China Universities, 2023, 29(1): 85-99.
    [40]
    BIRKHOLZER J, ZHOU Q L, TSANG C. Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems[J]. International Journal of Greenhouse Gas Control, 2009, 3(2): 181-194.
    [41]
    怡兵, 李义连, 张炜, 等. 岩盐沉淀对咸水层二氧化碳地质封存注入过程的影响: 以江汉盆地为例[J]. 地质科技情报, 2012, 31(3): 109-115.
    [42]
    LI C, ZHANG K, WANG Y, et al. Experimental and numerical analysis of reservoir performance for geological CO2 storage in the Ordos Basin in China[J]. International Journal of Greenhouse Gas Control, 2016, 45: 216-232.
    [43]
    NORDBOTTEN J M, CELIA M A, BACHU S. Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection[J]. Transport in Porous Media, 2005, 58(3): 339-360.
    [44]
    谢健, 魏宁, 吴礼舟, 等. CO2地质封存泄漏研究进展[J]. 岩土力学, 2017, 38(S1): 181-188.
    [45]
    陈浩东, 黄熠, 罗鸣, 等. 乌石17-2油田压裂井水泥环完整性评价[J]. 科学技术与工程, 2021, 21(30): 12909-12915.

    CHEN H D, HUANG Y, LUO M, et al. Evaluation of cement sheath integrity in fractured wells of Wushi 17-2 Oilfield [J]. Science Technology and Engineering, 2021, 21(30): 12909-12915.
    [46]
    WATSON T L, BACHU S. Identification of wells with high CO2-leakage potential in Mature Oil Fields developed for CO2-enhanced oil recovery[C]//SPE Symposium on Improved Oil Recovery. Tulsa: SPE, 2008.
    [47]
    RUAN B, XU R, WEI L, et al. Flow and thermal modeling of CO2 in injection well during geological sequestration[J]. International Journal of Greenhouse Gas Control, 2013, 19: 271-280.
    [48]
    刘硕琼, 李德旗, 袁进平, 等. 页岩气井水泥环完整性研究[J]. 天然气工业, 2017, 37(7): 76-82.
    [49]
    CHEN S, WANG H, LIU Y, et al. Root cause analysis of tubing and casing failures in low-temperature carbon dioxide injection well[J]. Engineering Failure Analysis, 2019, 104: 873-886.
    [50]
    ASAMOTO S, LE G Y, POUPARD O, et al. Well integrity assessment for CO2 injection: a numerical case study on thermos-mechanical behavior in downhole CO2 environments[J]. Engineering Computations, 2013, 30(6): 842-853.
    [51]
    高德利, 窦浩宇, 董雪林. 二氧化碳注入条件下井筒水泥环完整性若干研究进展[J]. 延安大学学报(自然科学版), 2022, 41(3): 1-9.

    GAO D L, DOU H Y, DONG X L. Research progress on the integrity of wellbore cement sheath under CO2 injection conditions[J]. Journal of Yan'an University (Natural Science Edition), 2022, 41(3): 1-9.
    [52]
    AURSAND P, HAMMER M, LAVROV A, et al. Well integrity for CO2 injection from ships: simulation of the effect of flow and material parameters on thermal stresses[J]. International Journal of Greenhouse Gas Control, 2017, 62: 130-141.
    [53]
    闫铁, 李永祥, 李静, 等. CO2埋存井固井水泥环封存效果与其性能参数研究[J]. 科学技术与工程, 2014, 14(18): 25-29.

    YAN T, LI Y X, LI J, et al. Study on the sealing effect and performance parameters of cement sheath in CO2 storage wells[J]. Science Technology and Engineering, 2014, 14(18): 25-29.
    [54]
    TAKASE K, BARHATE Y, HASHIMOTO H, et al. Cement-sheath wellbore integrity for CO2 injection and storage wells[C]. SPE Oil and Gas India Conference and Exhibition. Mumbai: SPE, 2010. https://doi.org/10.2118/127422-MS.
    [55]
    高显束, 余杨, 王晶, 等. 页岩气井固井用玻璃纤维水泥石力学性能及增韧机理研究[J]. 新世纪水泥导报, 2022, 28(3): 19-23.
    [56]
    EGOROVA E V, MINCHENKO Y S, DOLGOVA U V, et al. Study of dispersed-reinforced expanding plugging materials to improve the quality of well cementing[J]. IOP Conference Series: Earth and Environmental Science, 2021, 745: 012019/1-7.
    [57]
    龚鹏, 程小伟, 武治强, 等. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 71-77.

    GONG P, CHENG X W, WU Z Q, et al. Study on the effect of calcium carbonate whiskers on the self-healing of CO2-induced cracks in cement sheath [J]. Materials Reports, 2023, 37(7): 71-77.
    [58]
    安少辉, 刘爱萍, 高永会, 等. 胶乳水泥浆体系在剑门1井尾管悬挂固井中的应用[J]. 石油钻采工艺, 2008, 30(6): 62-66.
    [59]
    蒋国盛, 郑少军, 代天, 等. 纳米二氧化硅在固井水泥浆中的应用研究进展[J]. 探矿工程(岩土钻掘工程), 2021, 48(1): 68-74.
    [60]
    冯宇思, 刘硕琼, 刘慧婷, 等. 碳纳米管改性水泥石力学性能研究[J]. 钻井液与完井液, 2018, 35(6): 93-97.
    [61]
    WU C B, GAI G S, TIAN J, et al. Preparation of nano-silica fume coating rubber composite particle and its application in toughening the oil well cement stone[J]. Advances in Engineering Research, 2017, 150: 570-574.
    [62]
    李明, 邓双, 严平, 等. 纤维/晶须材料对固井水泥石的增韧机理研究[J]. 西南石油大学学报(自然科学版), 2016, 38(5): 151-156.

    LI M, DENG S, YAN P, et al. Study on toughening mechanism of fiber/whisker materials on cement sheath [J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(5): 151-156.
    [63]
    赵凯. 二氧化碳提高采收率井固井水泥环封隔失效因素及预防措施研究[J]. 当代化工, 2022, 51(6): 1439-1442.
    [64]
    张余果, 孙丛涛, 张鹏, 等. 合成水化硅酸钙(C-S-H)对水泥基材料Cl-结合性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 197-203.

    ZHANG Y G, SUN C T, ZHANG P, et al. Effect of synthetic calcium silicate hydrate (C-S-H) on the chloride binding properties of cement-based materials[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(1): 197-203.
    [65]
    CONNELL L, DOWN D, LU M, et al. An investigation into the integrity of wellbore cement in CO2 14 storage wells: core flooding experiments and simulations[J]. International Journal of Greenhouse Gas Control, 2015, 37: 424-440.
    [66]
    MATTEO E N, SCHERER G W. Experimental study of the diffusion-controlled acid degradation of class H portland cement[J]. International Journal of Greenhouse Gas Control, 2012, 7: 181-191.
    [67]
    OMOTAYO O, HIMANSHU M, RAMADAN A, et al. Experimental study of the effects of CO2 concentration and pressure at elevated temperature on the mechanical integrity of oil and gas well cement[J]. Journal of Natural Gas Science and Engineering, 2017, 44: 299-313.
    [68]
    LI L, LIU Q, DAO V, et al. Dimensional change of cement paste subjected to carbonation in CO sequestration and utilization context: a critical review on the mechanisms[J]. Journal of CO2 Utilization, 2023, 104: 102444/1-14.
    [69]
    柏明星, 张志超, 白华明, 等. 二氧化碳地质封存系统泄漏风险研究进展[J]. 特种油气藏, 2022, 29(4): 1-11.

    BAI M X, ZHANG Z C, BAI H M, et al. Research progress on leakage risk of carbon dioxide geological storage systems [J]. Special Oil & Gas Reservoirs, 2022, 29(4): 1-11.
    [70]
    BRUNET J P L, LI L, KARPYN Z T, et al. Fracture opening or self-sealing: critical residence time as a unifying parameter for cement-CO2-brine interactions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 25-37.
    [71]
    LIN Y, ZHU D, ZENG D, et al. Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions[J]. Corrosion Science, 2013, 74: 13-21.
    [72]
    WALSH S, FRANE W L, MASON H E, et al. Permeability of wellbore-cement fractures following degradation by carbonated brine[J]. Rock Mechanics & Rock Engineering, 2013, 46(3): 455-464.
    [73]
    龚承萌, 周念涛, 梅宗斌, 等. 封堵井水泥石在CO2湿相环境下的腐蚀规律研究[J]. 新技术新工艺, 2023(5): 60-66.

    GONG C M, ZHOU N T, MEI Z B, et al. Study on the corrosion law of plugging well cement stone in CO2 wet phase Environment [J]. New Technology & New Process, 2023(5): 60-66.
    [74]
    YANG Y G, YUAN B, WANG Y Q, et al. Carbonation resistance cement for CO2 storage and injection wells[J]. Journal of Petroleum Science and Engineering, 2016, 146: 883-889.
    [75]
    严思明, 戴珍珍, 裴贵彬, 等. 气态二氧化碳对气井固井水泥石的腐蚀分析[J]. 天然气工业, 2010, 30(9): 55-59.

    YAN S M, DAI Z Z, PEI G B, et al. Corrosion analysis of gas well cement sheath by gaseous carbon dioxide[J]. Natural Gas Industry, 2010, 30(9): 55-59.
    [76]
    MOSEBI O, MAHESHWARI H, AHMED R, et al. Degradation of well cement in HPHT acidic environment: effects of CO2 concentration and pressure[J]. Cement and Concrete Composites, 2016, 74: 54-70.
    [77]
    HERNÁNDEZ A R, GIORDANO M, BRUNO H, et al. A study of wellbore cement alteration controlled by CO2 leakage in a natural analogue for geological CO2 storage [J]. Applied Geochemistry, 2017, 86: 13-25.
    [78]
    勾密峰, 管学茂, 孙倩. 水化硅酸钙对氯离子的吸附[J]. 建筑材料学报, 2015, 18(3): 363-368.

    GOU M F, GUAN X M, SUN Q. Adsorption of chloride ions by calcium silicate hydrate [J]. Journal of Building Materials, 2015, 18(3): 363-368.
    [79]
    周扬. 基于分子动力学的水化硅酸钙的微结构与性能研究[D]. 南京: 东南大学, 2018.
    [80]
    胡晨光, 王娟, 白瑞英, 等. 氯离子环境下钙矾石和水化硅酸钙体系铝配位分布[J]. 功能材料, 2018, 49(2): 2146-2151.

    HU C G, WANG J, BAI R Y, et al. Aluminum coordination distribution in ettringite and calcium silicate hydrate systems under chloride ion environment[J]. Journal of Functional Materials, 2018, 49(2): 2146-2151.
    [81]
    MISHRA A K, SCHIAVON S, WARGOCKI P, et al. Respiratory performance of humans exposed to moderate levels of carbon dioxide[J]. Indoor Air, 2021, 31(5): 1540-1552.
    [82]
    涂志军, 耿世彬, 李永. 地下工程内人体对CO2浓度的生理响应试验研究[J]. 中国安全科学学报, 2020, 30(12): 173-179.

    TU Z J, GENG S B, LI Y. Experimental study on physiological response of human nody to CO2 concentration in underground engineering [J]. China Safety Science Journal, 2020, 30(12): 173-179.
    [83]
    陈兵, 郭焕焕, 崔维刚, 等. 含杂质CO2管道泄漏扩散模拟分析[J]. 石油与天然气化工, 2019, 48(3): 104-109.

    CHEN B, GUO H H, CUI W G, et al. Simulation analysis of leakage and diffusion of impure CO2 in pipelines[J]. Chemical Engineering of Oil and Gas, 2019, 48(3): 104-109.
    [84]
    VILARRASA V, MAKHNENKO R Y, PARISIO F. Geomechanics and fluid flow in geothermal systems[J]. Geofluids, 2020, 2020: 6085738/1-3.
    [85]
    郭文瑾, 张一梅, 栗帅, 等. CCUS技术CO2泄漏模拟及生态风险评价[J]. 环境科学与技术, 2022, 45(5): 180-192.

    GUO W J, ZHANG Y M, LI S, et al. Simulation of CO2 leakage and ecological risk assessment for carbon capture, utilization, and storage (CCUS) technology[J]. Environmental Science & Technology, 2022, 45(5): 180-192.
    [86]
    聂莉娟, 马俊杰, 赵雪峰, 等. 模拟CCS技术CO2泄漏对C3、C4作物土壤化学性质的影响[J]. 水土保持学报, 2015, 29(5): 200-205.

    NIE L J, MA J J, ZHAO X F, et al. Simulation of the effects of CO2 leakage from CCS technology on soil chemical properties of C3 and C4 crops[J]. Journal of Soil and Water Conservation, 2015, 29(5): 200-205.
    [87]
    崔振东, 刘大安, 曾荣树, 等. CO2地质封存工程的潜在地质环境灾害风险及防范措施[J]. 地质论评, 2011, 57(5): 700-706.

    CUI Z D, LIU D A, ZENG R S, et al. Potential geological environmental disaster risks and preventive measures of CO2 geological storage projects[J]. Geological Review, 2011, 57(5): 700-706.
    [88]
    NOGUES J P, NORDBOTTEN J M, CELIA M A. Detecting leakage of brine or CO2 through abandoned wells in a geological sequestration operation using pressure monitoring wells[J]. Energy Procedia, 2011, 4: 3620-3627.
    [89]
    ANSEN O, GILDING D, NAZARIAN B, et al. The history of injecting and storing 1 Mt CO2 in the Fluvial Tubåen Fm[J]. Energy Procedia, 2013, 37: 3565-3573.
    [90]
    EL-KASEEH G, WILL R, BALCH R, et al. Multi-scale seismic measurements for CO2 monitoring in an EOR/CCUS Project[J]. Energy Procedia, 2017, 114: 3070-3839.
    [91]
    BERGER P M, WIMMER B, IRANMANESH A. Sensitivity thresholds of groundwater parameters for detecting CO2 leakage at a geologic carbon sequestration site[J]. Environmental Monitoring and Assessment, 2019, 191(11): 685/1-12.
    [92]
    CARRIGAN C R, YANG X, LABRECQUE D J, et al. Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs[J]. International Journal of Greenhouse Gas Control, 2013, 18: 401-408.
    [93]
    CARRIGAN C, RAMIREZ A, NEWMARK R, et al. Application of ERT for tracking CO2 plume growth and movement at the SECARB Cranfield site[R]: Lawrence Livermore National Lab (LLNL), Livermore, 2009.
    [94]
    张晶宇, 刘平, 肖波, 等. 井筒完整性监测方法在CCUS中的应用探讨[J]. 油气井测试, 2023, 32(6): 55-59.
    [95]
    杨威. 工业CCUS二氧化碳捕集安全监测预警系统研究[D]. 淮南: 安徽理工大学, 2022.
    [96]
    郝绍金. CCUS-EOR系统CO2逸散及其对土壤和植被的影响研究[D]. 徐州: 中国矿业大学, 2015.
    [97]
    RINGROSE P S, MATHIESON A S, WRIGHT I W, et al. The in salah CO2 storage project: lessons learned and knowledge transfer[J]. Energy Procedia, 2013, 37: 6226-6236.
    [98]
    赵改善. 二氧化碳地质封存地球物理监测: 现状、挑战与未来发[J]. 石油物探, 2023, 62(2): 194-211.

    ZHAO G S. Geophysical monitoring of geological carbon sequestration: current status, challenges, and future developments[J]. Geophysical Prospecting for Petroleum, 2023, 62(2): 194-211.
    [99]
    刘贺娟, 童荣琛, 侯正猛, 等. 地下流体注采诱发地震综述及对深部高温岩体地热开发的影响[J]. 工程科学与技术, 2022, 54(1): 83-96.

    LIU H J, TONG R C, HOU Z M, et al. A review of induced seismicity by underground fluid injection and extraction and its impact on geothermal development in deep high-temperature rock masses[J]. Engineering Science and Technology, 2022, 54(1): 83-96.
    [100]
    金显杭, 方佳伟, 王永胜, 等. 咸水层CO2地质封存泄漏监测的示踪剂优选[J]. 天然气化工(C1化学与化工), 2020, 45(5): 72-76.

    JIN X H, FANG J W, WANG Y S, et al. Tracer selection for leakage monitoring of CO2 geological storage in saline aquifers[J]. Natural Gas Chemical Industry (C1 Chemistry and Chemical Engineering), 2020, 45(5): 72-76.
    [101]
    LEWICKI J L, FISCHER M L, HILLEY G E. Six-week time series of eddy covariance CO2 flux at Mammoth Mountain, California: performance evaluation and role of meteorological forcing[J]. Lawrence Berkeley National Laboratory, 2007, 171: 178-191.
    [102]
    汤沭成, 林千果, 王昊, 等. 黄土塬地区CO2驱油封存泄漏土壤监测体系研究[J]. 安全与环境工程, 2020, 27(6): 112-118.

    TANG S C, LIN Q G, WANG H, et al. Study on soil monitoring system for leakage of CO2 driven oil recovery and storage in Loess Plateau Area[J]. Safety and Environmental Engineering, 2020, 27(6): 112-118.
    [103]
    张琪, 崔永君, 步学朋, 等. CCS监测技术发展现状分析[J]. 神华科技, 2011, 9(2): 77-82.
    [104]
    van LEEUWEN C, MEIJER H A J. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O2 measurements[J]. International Journal of Greenhouse Gas Control, 2015, 41: 194-209.
    [105]
    祁亚辉, 王小丹. 陆地生态系统碳通量面临的挑战与机遇——基于涡度协方差测定[J]. 生态学报, 2023, 43(8): 2979-2994.

    QI Y H, WANG X D. Challenges and opportunities of carbon flux in terrestrial ecosystems based on eddy covariance measurements [J]. Acta Ecologica Sinica, 2023, 43(8): 2979-2994.
    [106]
    BENNER R L, LAMB B. A fast response continuous analyzer for halogenated atmospheric tracers[J]. Journal of Atmospheric and Oceanic Technology, 1985, 2(4): 582-589.
    [107]
    张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京: 清华大学, 2023.
    [108]
    孙海萍, 孙洋洲. 国内油气企业CCUS项目现状及产业发展探究[J]. 低碳化学与化工, 2024, 49(7): 139-146.
    [109]
    刘竹, 关大博, 魏伟. 中国二氧化碳排放数据核算[J]. 中国科学(地球科学), 2018, 48(7): 878-887.

    LIU Z, GUAN D B, WEI W. Accounting for carbon dioxide emissions in China[J]. Science China (Earth Sciences), 2018, 61(7): 878-887.
    [110]
    谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960.

    XIE H P, WU L X, ZHENG D Z. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7): 1949-1960.
    [111]
    滕吉文, 司芗, 王玉辰. 我国化石能源勘探、开发潜能与未来[J]. 石油物探, 2021, 60(1): 1-12.

    TENG J W, SI X, WANG Y C. Potential and future of fossil fuel exploration and development in China [J]. Geophysical Prospecting for Petroleum, 2021, 60(1): 1-12.

Catalog

    Article views (137) PDF downloads (42) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return