Citation: | CHEN Jian, LI Youshi, LU Xinyuan, TANG Hedan, CHEN Feiqiang, HE Junjie, LI Yong, SUN Shichao. Investigation on Synthesis of CeO2-stabilized CaO/CuO Composite Nanospheres and Their Thermochemical Energy Storage Characteristics[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(2): 55-61. DOI: 10.6054/j.jscnun.2024022 |
An integrated Ca/Cu looping thermochemical heat storage process was proposed, employing cyclic calcination/reduction-oxidation-carbonation reactions of CaO/CuO composite materials for hydrogen energy storage. In the energy storage stage, the calcination/reduction reaction occurred between hydrogen and CaO/CuO composite materials, storing hydrogen energy as the thermochemical energy of these materials. In the subsequent energy release stage, the CaO/CuO composite materials underwent oxidation and carbonation reactions stepwise with air and CO2, releasing the previously stored thermochemical energy as heat. For the CaO/CuO composite materials in the proposed process, a two-step synthesis method was used to prepare CeO2-stabilized CaO/CuO composite nanospheres. The effect of CeO2 content on the CaO/CuO composite pellets was studied in a fixed-bed reactor. The results show that all of the CeO2-stabilized CaO/CuO composite nanospheres exhibited stable oxidation performance over ten cycles. However, the CeO2 content had a significant impact on the carbonation performance of CeO2-stabilized CaO/CuO composite nanospheres. With an increase in the CeO2 content from 20% to 60%, the initial carbonation performance of CaO/CuO composite nanospheres decreased significantly from 0.092 g/g to 0.017 g/g.
[1] |
王风云, 张爽. 我国可再生能源发电趋势与市场空间研究——兼析"十四五"期间可再生能源发展潜力[J]. 价格理论与实践, 2020, 4: 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JGLS202004009.htm
WANG F Y, ZHANG S. Research on the trend and market capacity of renewable energy power generation in China: and predictive analysis of the renewable energy development during the 14th Five-year Plan period[J]. Price: Theory & Practice, 2020, 4: 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JGLS202004009.htm
|
[2] |
封红丽. 我国可再生能源消纳现状及对策研究[J]. 电器工业, 2017, 10: 6-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DQGY201710010.htm
FENG H L. Research on current situation and countermeasures of consumption of renewable energy in China[J]. China Electrical Equipment Industry, 2017, 10: 6-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DQGY201710010.htm
|
[3] |
谢欣烁, 杨卫娟, 施伟, 等. 制氢技术的生命周期评价研究进展[J]. 化工进展, 2018, 37(6): 2147-2158. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201806015.htm
XIE X S, YANG W J, SHI W, et al. Life cycle assessment of technologies for hydrogen production: a review[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2147-2158. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201806015.htm
|
[4] |
MUHAMMAD R U. Hydrogen storage methods: review and current status[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112743/1-11.
|
[5] |
BOSU S, RAJAMOHAN N. Recent advancements in hydrogen storage-Comparative review on methods, operating conditions and challenges[J]. International Journal of Hydrogen Energy, 2024, 52: 352-370.
|
[6] |
殷卓成, 杨高, 刘怀, 等. 氢能储运关键技术及前景分析[J]. 辽宁化工, 2021, 41(11): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-LNHG202110015.htm
YIN Z C, YANG G, LIU H, et al. Research status and prospect analysis of key technologies for hydrogen energy storage and transportation[J]. Liaoning Chemical Industry, 2021, 41(11): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-LNHG202110015.htm
|
[7] |
曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(6): 1461-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG202106032.htm
CAO J W, QIN X F, GENG G, et al. Current status and prospects of hydrogen storage and transportation technology[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2021, 37(6): 1461-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG202106032.htm
|
[8] |
李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201804011.htm
LI L L, FAN S S, CHEN Q X, et al. Hydrogen storage technology: current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201804011.htm
|
[9] |
ARSAD A Z, HANNAN M A, AL-SHETWI A Q, et al. Hydrogen energy storage integrated hybrid renewable energy systems: a review analysis for future research directions[J]. International Journal of Hydrogen Energy, 2022, 47: 17285-17312. doi: 10.1016/j.ijhydene.2022.03.208
|
[10] |
MODU B, ABDULLAH M P, BUKAR A L, et al. A systematic review of hybrid renewable energy systems with hydrogen storage: sizing, optimization, and energy management strategy[J]. International Journal of Hydrogen Energy, 2023, 48: 38354-38373. doi: 10.1016/j.ijhydene.2023.06.126
|
[11] |
YAN T, WANG R Z, LI T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 13-31. doi: 10.1016/j.rser.2014.11.015
|
[12] |
陈健, 孙世超, 李铭迪, 等. 钙铜复合吸收剂CO2捕集性能优化研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 43-52. doi: 10.6054/j.jscnun.2022043
CHEN J, SUN S C, LI M D, et al. The progress in the research on optimizing CO2 capture performance of CaO/CuO composites[J]. Journal of South China Normal University(Natural Science Edition), 2022, 54(3): 43-52. doi: 10.6054/j.jscnun.2022043
|
[13] |
陈健, 李友势, 黄昌强, 等. 钙铜复合吸收剂的一步法合成及其CO2捕集性能[J]. 华南师范大学学报(自然科学版), 2023, 55(5): 1-7. doi: 10.6054/j.jscnun.2023057
CHEN J, LI Y S, HUANG C Q, et al. Investigation on one-step synthesis of CaO/CuO composite pellets and their CO2 capture performance[J]. Journal of South China Normal University(Natural Science Edition), 2023, 55(5): 1-7. doi: 10.6054/j.jscnun.2023057
|
[14] |
CHEN J, DUAN L B, DONAT F, et al. Self-activated, nanostructured composite for improved CaL-CLC technology[J]. Chemical Engineering Journal, 2018, 351: 1038-1046. doi: 10.1016/j.cej.2018.06.176
|