• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Wanhui, WANG Chunjuan, HU Ji. Constructing Star-Shaped Compound to Improve the Performance of Cross-Linked Solid Polymer Electrolytes[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(2): 25-31. DOI: 10.6054/j.jscnun.2024019
Citation: WANG Wanhui, WANG Chunjuan, HU Ji. Constructing Star-Shaped Compound to Improve the Performance of Cross-Linked Solid Polymer Electrolytes[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(2): 25-31. DOI: 10.6054/j.jscnun.2024019

Constructing Star-Shaped Compound to Improve the Performance of Cross-Linked Solid Polymer Electrolytes

More Information
  • Received Date: March 10, 2023
  • Available Online: June 21, 2024
  • The star-shaped compound was fabricated by a UV irradiation reaction between trimethylolpropane tris(3-mercaptopropionate) (TMPMP) or pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) with the introduction of poly(ethylene glycol) methacrylate (PEGMA) follow the mechanism of thiol-acrylate click chemistry. Additionally, PETMP or TMPMP is used as the crosslinker in the system, and PEGMA is used as the branch chain of the star-shaped compound. The structure of the compound can be tuned by utilizing different crosslinker combined with varying the molecular weight of PEGMA, effectively. By blending the prepared star-shaped compound into a kind of cross-linked solid polymer electrolytes (SPEs), the mechanical and electrochemical performances of this SPEs are improved simultaneously. In particular, the tensile strength, Young's modulus, elongation at break, tensile toughness, and ionic conductivity at room temperature of the product is 83.9 MPa, 180.4 MPa, 49.9%, 22.6 MJ/m3, and 2.8×10-5 S/cm, respectively. The discharge capacity of the solid-state lithium metal batteries assembled by the fabricated SPEs reaches 111.5 mAh/g at 0.1C after 100 cycles, indicating nearly 77% of the capacity maintaining.

  • [1]
    XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. doi: 10.1021/cr500003w
    [2]
    WANG Q, WANG S, LU T, et al. Ultrathin solid polymer electrolyte design for high-performance Li metal batteries: a perspective of synthetic chemistry[J]. Advanced Science, 2023, 10(1): 2205233/1-22.
    [3]
    CHOI N S, CHEN Z, FREUNBERGER S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition, 2012, 51(40): 9994-10024. doi: 10.1002/anie.201201429
    [4]
    HU Y, XIE X, LI W, et al. Recent progress of polymer electrolytes for solid-state lithium batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(4): 1253-1277.
    [5]
    XUE Z, HE D, XIE X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. doi: 10.1039/C5TA03471J
    [6]
    MA X, CHEN H, LIU X, et al. Polymers for long-cycle and highly safe lithium-based batteries[J]. Macromolecular Materials and Engineering, 2022, 307(7): 2100923/1-16.
    [7]
    FAN L, WEI S, LI S, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11): 1702657/1-31.
    [8]
    PAN Z, LI L, WANG L, et al. Tailoring poly (styrene-co-maleic anhydride) networks for all-polymer dielectrics exhibiting ultrahigh energy density and charge-discharge efficiency at elevated temperatures[J]. Advanced Materials, 2023, 35(1): 2207580/1-22.
    [9]
    LI X, ZHENG Y, DUAN Y, et al. Designing comb-chain crosslinker-based solid polymer electrolytes for additive-free all-solid-state lithium metal batteries[J]. Nano Letters, 2020, 20(9): 6914-6921. doi: 10.1021/acs.nanolett.0c03033
    [10]
    CHOI Y G, SHIN J C, PARK A, et al. Pyrrolidinium-PEG ionic copolyester: Li-ion accelerator in polymer network solid-state electrolytes[J]. Advanced Energy Materials, 2021, 11(44): 2102660/1-9.
    [11]
    MEZZENGA R, BOOGH L, MÅNSON J E. A review of dendritic hyperbranched polymer as modifiers in epoxy composites[J]. Composites Science and Technology, 2001, 61(5): 787-795. doi: 10.1016/S0266-3538(01)00022-7
    [12]
    BOOGH L, PETTERSSON B, MÅNSON J A E. Dendritic hyperbranched polymers as tougheners for epoxy resins[J]. Polymer, 1999, 40(9): 2249-2261. doi: 10.1016/S0032-3861(98)00464-9
    [13]
    ZHAO Y, WU Z, GUO S, et al. Hyperbranched graphene oxide structure-based epoxy nanocomposite with simultaneous enhanced mechanical properties, thermal conductivity, and superior electrical insulation[J]. Composites Science and Technology, 2022, 217: 109082/1-9.
    [14]
    SUN J, QIAN L, LI J. Toughening and strengthening epoxy resin with flame retardant molecular structure based on tyrosine[J]. Polymer, 2021, 230: 124045/1-15.
    [15]
    ZHANG Y, LIU R, YU R, et al. Phosphorus-free hyperbranched polyborate flame retardant: ultra-high strength and toughness, reduced fire hazards and unexpected trans-parency for epoxy resin[J]. Composites Part B: Engineering, 2022, 242: 110101/1-12.
    [16]
    SHI L, WANG W, WANG C, et al. In situ formed cross-linked polymer networks as dual-functional layers for high-stable lithium metal batteries[J]. Journal of Energy Chemistry, 2023, 79: 253-262. doi: 10.1016/j.jechem.2022.12.007
    [17]
    杨珍娥, 李国明, 程利霞, 等. 聚氨酯/聚丙烯酸酯互穿网络结构聚合物的制备[J]. 华南师范大学学报(自然科学版), 2012, 44(4): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201204020.htm

    YANG Z E, LI G M, CHENG L X, et al. Synthesis of polyurethane-polyacrylate interpenetrating network polymer[J]. Journal of South China Normal University (Natural Science Edition), 2012, 44(4): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSF201204020.htm
    [18]
    吴旭, 侯贤华. 基于尼龙6和聚偏氟乙烯复合隔膜的凝胶聚合物电解质[J]. 华南师范大学学报(自然科学版), 2022, 54(1): 36-41. doi: 10.6054/j.jscnun.2022006

    WU X, HOU X H. The gel polymer electrolyte based on nylon 6 and polyvinylidene fluoride membrane[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 36-41. doi: 10.6054/j.jscnun.2022006
    [19]
    PANDIAN A, CHEN X, CHEN J, et al. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings[J]. Journal of Power Sources, 2018, 390: 153-164. doi: 10.1016/j.jpowsour.2018.04.006
    [20]
    CHEN Z, LI J, QIU F, et al. A sulfur-containing polymer-plasticized poly(ethylene oxide)-based electrolyte enables highly effective lithium dendrite suppression[J]. Journal of Materials Chemistry A, 2022, 10(28): 14849-14856. doi: 10.1039/D2TA03042J
    [21]
    LI M, WANG K, LIU J, et al. Synergistically reinforced poly (ethylene oxide)-based composite electrolyte for high-temperature lithium metal batteries[J]. Journal of Colloid and Interface Science, 2022, 622: 1029-1036. doi: 10.1016/j.jcis.2022.05.002
    [22]
    王万慧, 周扬, 胡骥. 刚柔并济聚氨酯基固态聚合物电解质[J]. 华南师范大学学报(自然科学版), 2023, 55(4): 36-41. doi: 10.6054/j.jscnun.2023047

    WANG W H, ZHOU Y, HU J. Rigid-flexible coupling solid polymer electrolytes based on polyurethane[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(4): 36-41. doi: 10.6054/j.jscnun.2023047

Catalog

    Article views (73) PDF downloads (23) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return