• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LI Mingdi, LI Guanghua, CHEN Jian, HU Yanbin, LI Youshi. Impact of Blending Oxygenated Fuels on the Formation of Intermediate Products in Diesel Combustion Process[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(2): 11-17. DOI: 10.6054/j.jscnun.2024017
Citation: LI Mingdi, LI Guanghua, CHEN Jian, HU Yanbin, LI Youshi. Impact of Blending Oxygenated Fuels on the Formation of Intermediate Products in Diesel Combustion Process[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(2): 11-17. DOI: 10.6054/j.jscnun.2024017

Impact of Blending Oxygenated Fuels on the Formation of Intermediate Products in Diesel Combustion Process

More Information
  • Received Date: January 29, 2024
  • Available Online: June 21, 2024
  • Employing the Chemkin-Pro diesel engine combustion model, n-heptane was chosen as a surrogate fuel to represent diesel, and a combustion mechanism encompassing ethanol/dimethyl ether/n-heptane was developed. The investigation delved into the effects of varying molar blending ratios of ethanol and dimethyl ether, two oxygenated fuels, on the combustion temperature, pressure, and resulting products of n-heptane. The outcomes revealed that ethanol blending led to a more pronounced reduction in reaction temperature and pressure compared to dimethyl ether. Notably, when ethanol and dimethyl ether were blended concurrently, the blending ratio of dimethyl ether emerged as a determinant factor in shaping the reaction timing. Specifically, as the dimethyl ether blending ratio rose from 15% to 35%, the combustion reaction advanced by approximately 10°(Crank Angle). Furthermore, the blending ratio of dimethyl ether exerted a significant influence on the genesis timing of oxidizing free radicals, with a higher ratio precipitating an earlier formation. Conversely, the peak molar fractions of free radicals were primarily influenced by the blending ratio of ethanol. As the ethanol blending ratio increased, the peak molar fractions of all three free radicals exhibited a rising trend. In terms of combustion products, ethanol blending effectively mitigated the formation of formaldehyde and acetaldehyde, while dimethyl ether blending primarily reduced acetaldehyde levels but potentially increased formaldehyde production. Intriguingly, when ethanol and dimethyl ether were blended in tandem and the proportion of dimethyl ether was enhanced, both the peak molar fractions of formaldehyde and acetaldehyde decreased, and the ultimate production of CO2 also diminished.

  • [1]
    苗长林, 李吾环, 吕鹏梅, 等. 酯类含氧燃料应用研究现状及进展[J]. 农业工程学报, 2021, 37(11): 197-205. doi: 10.11975/j.issn.1002-6819.2021.11.022

    MIAO C L, LI W H, LÜ P M, et al. Development and current situation of ester oxygenated fuels application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 197-205. doi: 10.11975/j.issn.1002-6819.2021.11.022
    [2]
    苏鹏, 杨鑫, 张永虎, 等. 高原环境下聚甲氧基二甲醚对柴油机燃烧和排放性能的影响[J]. 内燃机工程, 2022, 43(6): 55-61;68. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG202206007.htm

    SU P, YANG X, ZHANG Y, et al. Effects of polyoxymethylene dimethyl ethers on the combustion and emission characteristics of a diesel engine at plateau environment[J]. Chinese Internal Combustion Engine Engineering, 2022, 43(6): 55-61;68. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG202206007.htm
    [3]
    王海峰, 李士杰, 谢斌, 等. 柴油/正戊醇/甲醇三元微乳化燃料柴油机燃烧与排放特性研究[J]. 内燃机工程, 2018, 39(5): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201805005.htm

    WANG H F, LI S J, XIE B, et al. Analysis of combustion and emission characteristics of a diesel engine fueled with ternary micro-emulsion blends[J]. Chinese Internal Combustion Engine Engineering, 2018, 39(5): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201805005.htm
    [4]
    陈健, 孙世超, 李铭迪, 等. 钙铜复合吸收剂CO2捕集性能优化研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 43-52. doi: 10.6054/j.jscnun.2022043

    CHEN J, SUN S C, LI M D, et al. The progress in the research on optimizing CO2 capture performance of CaO/CuO Composites[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 43-52. doi: 10.6054/j.jscnun.2022043
    [5]
    伊尔夏提·地里夏提, 白翔, 纳森巴特, 等. 不同方法改性的镍负载柱撑蛭石对CH4与CO2重整反应的催化性能研究[J]. 华南师范大学学报(自然科学版), 2023, 55(3): 9-16. doi: 10.6054/j.jscnun.2023030

    YIERXIATI D, BAI X, NASEN B, et al. The reforming reaction of CH4 and CO2 zed by nickel-loading column vermiculite modified by different methods[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 9-16. doi: 10.6054/j.jscnun.2023030
    [6]
    纪常伟, 辛固, 汪硕峰, 等. 零碳及碳中和燃料内燃机应用进展[J]. 北京工业大学学报, 2022, 48(3): 273-291. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202203006.htm

    JI C W, XIN G, WANG S F, et al. Application progress of zero carbon and carbon-neutral fuel internal combustion engines[J]. Journal of Beijing University of Technology, 2022, 48(3): 273-291. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202203006.htm
    [7]
    PATRIK S, THOMAS H, YURI W, et al. The potential of dimethyl ether (DME) to meet current and future emissions standards in heavy-duty compression-ignition engines[J]. Fuel, 2024, 355, 129357/1-16: .
    [8]
    刘少华, 杨顺堃, 申立中, 等. 大气氧和燃料氧对高压共轨柴油机燃烧和排放的影响[J]. 昆明理工大学学报(自然科学版), 2023, 48(4): 64-73;152. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG202304008.htm

    LIU S H, YANG S K, SHEN L Z, et al. Effect of atmospheric oxygen content and oxygenated fuel on combustion and emission of high-pressure common-rail diesel engines[J]. Journal of Kunming University of Science and Technology (Natural Science), 2023, 48(4): 64-73;152. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG202304008.htm
    [9]
    刘海峰, 张朔, 张鹏, 等. 不同醇类燃料对柴油替代物部分预混火焰多环芳烃及碳烟演化的影响[J]. 燃烧科学与技术, 2022, 28(3): 313-321. https://www.cnki.com.cn/Article/CJFDTOTAL-RSKX202203011.htm

    LIU H F, ZHANG S, ZHANG P, et al. Effects of different alcohol fuels on polycyclic aromatic hydrocarbons and soot evolution of partially premixed flames using diesel surrogate[J]. Journal of Combustion Science and Technology, 2022, 28(3): 313-321. https://www.cnki.com.cn/Article/CJFDTOTAL-RSKX202203011.htm
    [10]
    唐琦军, 蒋蘋, 刘敬平, 等. 丙酮-丁醇-乙醇/汽油混合燃料对高速发动机性能影响的试验研究[J]. 内燃机工程, 2021, 42(3): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG202103006.htm

    TANG Q J, JIANG P, LIU J P, et al. Experimental study on the effects of acetone-butanol-ethanol/gasoline blends on the performance of a high-speed engine[J]. Chinese Internal Combustion Engine Engineering, 2021, 42(3): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG202103006.htm
    [11]
    赵鹏云, 陈占明, 王涛, 等. 二甲醚和柴油高压喷射喷雾与燃烧可视化对比研究[J]. 西安交通大学学报, 2023, 57(6): 152-159. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202306017.htm

    ZHAO P Y, CHEN Z M, WANG T, et al. A comparative study of visual spray and combustion characteristics of dimethyl ether and diesel under high pressure[J]. Journal of Xi'an Jiaotong University, 2023, 57(6): 152-159. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202306017.htm
    [12]
    COVA-BONILLO A, PATIO-CAMINO R, HERNÁNDE Z, et al. Autoignition of ethanol-diesel blends: is it worth dehydrating ethanol[J]. Social Science Electronic Publishing, 2022, 317, 123523/1-12.
    [13]
    SEISER R, PITSCH H, SESHADRI K, et al. Extinction and autoignition of n-heptane in counterflow configuration[J]. Proceedings of the Combustion Institute, 2000, 28(2): 2029-2037.
    [14]
    MARINOV N M. A detailed chemical kinetic model for high temperature ethanol oxidation[J]. International Journal of Chemical Kinetics, 1999, 31: 183-220. doi: 10.1002/(SICI)1097-4601(1999)31:3%3C183::AID-KIN3%3E3.0.CO;2-X/abstract
    [15]
    FISCHER S L, DRYER F J, CURRAN H J. The reaction kinetics of dimethyl ether. Ⅰ. High-temperature pyrolysis and oxidation in flow reactor[J]. International Journal of Chemical Kinetics, 2000, 32(12): 713-740.
    [16]
    CURRAN H J, FISCHER S L, DRYER F L. The reaction kinetics of dimethyl ether. Ⅱ. Low-temperature oxidation in flow reactors[J]. International Journal of Chemical Kinetics, 2000, 32(12): 741-759.
  • Cited by

    Periodical cited type(2)

    1. 范松柏,廖文怡,吴玉婷,潘志娟. 纤维基柔性传感器的应用现状及发展趋势. 南通大学学报(自然科学版). 2024(02): 46-57 .
    2. 王童飞,李学暖,李天昊,唐婷范,覃丹凤,程昊. 静电纺聚丙烯腈/聚苯胺复合材料的制备及电化学发光检测阿奇霉素. 分析科学学报. 2022(05): 617-622 .

    Other cited types(5)

Catalog

    Article views (81) PDF downloads (37) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return