Citation: | DOU Liangbin, WANG Ting, FANG Yong, CHENG Xuebin, CHEN Jingyang, CHENG Zhiling. The Influence of Carbonate Dissolution on Physical Properties and Pore Structure of Sandstone Reservoir[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(2): 1-10. DOI: 10.6054/j.jscnun.2024016 |
The change of physical properties, mineral composition and pore structure of Chang 6 sandstone cores with different permeability levels in Ordos Basin before and after carbonic acid dissolution were systematically studied. The results show that for rock samples with low permeability, the content of other mineral components except quartz decreases due to the dissolution of carbonate water, while for rock samples with high permeability, due to the small specific surface area of pore space, the interaction strength between minerals and carbonate water is weak, and a small amount of calcite and feldspar are dissolved and the content decreases, while the relative content of other minerals increases. With the continuous injection of carbonate water, the porosity and permeability of the core with a permeability of 0.1 mD increase continuously, and the porosity and permeability of the core with a permeability of 1.0 mD decrease first and then increase. When the core permeability is 10 mD, the core porosity and permeability decrease continuously. In general, the relative change rate of porosity is between -5.77% and -3.68%. The relative change rate of permeability was between -21.87% and -18.47%. The research results reveal the characteristics of pore throat structure changes under the interaction between sandstone with different porosity and permeability levels and carbonate water, which can provide an important theoretical basis for the formulation of CO2 displacement and storage schemes in low permeability reservoirs.
[1] |
朱子涵, 李明远, 林梅钦, 等. 储层中CO2-水-岩石相互作用研究进展[J]. 矿物岩石地球化学通报, 2011, 30(1): 104-112. doi: 10.3969/j.issn.1007-2802.2011.01.015
ZHU Z H, LI M Y, LIN M Q, et al. Research progress of CO2-water-rock interaction in reservoir[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 104-112. doi: 10.3969/j.issn.1007-2802.2011.01.015
|
[2] |
曹绪龙, 吕广忠, 王杰, 等. 胜利油田CO2驱油技术现状及下步研究方向[J]. 油气藏评价与开发, 2020, 10(3): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202003008.htm
CAO X L, LÜ G Z, WANG J, et al. Technology status and future research direction of CO2 flooding in Shengli Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(3): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202003008.htm
|
[3] |
戴彩丽, 丁行行, 于志豪, 等. CO2和地层水对储层物性的影响研究进展[J]. 油田化学, 2019, 36(4): 741-747. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201904033.htm
DAI C L, DING X X, YU Z H, et al. Research progress of effects of CO2 and formation water on reservoir physical properties[J]. Oilfield Chemistry, 2019, 36(4): 741-747. https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201904033.htm
|
[4] |
李阳. 低渗透油藏CO2驱提高采收率技术进展及展望[J]. 油气地质与采收率, 2020, 27(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001002.htm
LI Y. Progress and prospect of CO2 flooding technology for enhanced oil recovery in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202001002.htm
|
[5] |
王琛, 李天太, 高辉, 等. CO2驱沥青质沉积量对致密砂岩油藏采收率的影响机理[J]. 油气地质与采收率, 2018, 25(3): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201803016.htm
WANG C, LI T T, GAO H, et al. Mechanism of influence of CO2 flooding asphaltene deposition on recovery efficiency of tight sandstone reservoir[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(3): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201803016.htm
|
[6] |
祝春生, 程林松. 低渗透油藏CO2驱提高原油采收率评价研究[J]. 钻采工艺, 2007, 30(6): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY200706022.htm
ZHU C S, CHENG L S. Evaluation of enhanced oil recovery by CO2 flooding in low permeability reservoir[J]. Drilling & Production Technology, 2007, 30(6): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY200706022.htm
|
[7] |
黄兴, 倪军, 李响, 等. 致密油藏不同微观孔隙结构储层CO2驱动用特征及影响因素[J]. 石油学报, 2020, 41(7): 853-864. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202007009.htm
HUANG X, NI J, LI X, et al. Characteristics and influencing factors of CO2 driving in tight reservoirs with different micro-pore structure[J]. Acta Petrolei Sinica, 2020, 41(7): 853-864. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202007009.htm
|
[8] |
王琛. 致密砂岩油藏CO2驱CO2-原油-微纳米级孔喉系统相互作用机理研究[D]. 北京: 中国石油大学(北京), 2018.
WANG C. Study on interaction mechanism of CO2-crude oil-micro/nano scale pore throat system in CO2 flooding of tight sandstone reservoir[D]. Beijing: China University of Petroleum (Beijing), 2018.
|
[9] |
DOU L B, SHU G L, GAO H, et al. Study on the effect of high-temperature heat treatment on the microscopic pore structure and mechanical properties of tight sandstone[J]. Geofluids, 2021, 2021: 8886186/1-13.
|
[10] |
赵明国, 杨艳真, 杨洪羽. CO2驱中岩石性质变化[J]. 科技导报, 2013, 31(23): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201323026.htm
ZHAO M G, YANG Y Z, YANG H Y. Change of rock properties in CO2 flooding[J]. Science and Technology Review, 2013, 31(23): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201323026.htm
|
[11] |
李锋胜. CO2地质埋存过程中溶蚀机理研究[D]. 北京: 中国地质大学(北京), 2019.
LI F S. Research on dissolution mechanism of CO2 in geological storage[D]. Beijing: China University of Geosciences (Beijing), 2019.
|
[12] |
袁舟, 廖新维, 赵晓亮, 等. 砂岩油藏CO2驱替过程中溶蚀作用对储层物性的影响[J]. 油气地质与采收率, 2020, 27(5): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005012.htm
YUAN Z, LIAO X W, ZHAO X L, et al. Influence of dissolution on reservoir physical properties during CO2 displacement in sandstone reservoir[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202005012.htm
|
[13] |
张耀峰. 碳化水驱油藏数值模拟研究[D]. 北京: 中国石油大学(北京), 2017.
ZHANG Y F. Numerical simulation of carbonized water drive reservoir[D]. Beijing: China University of Petroleum (Beijing), 2017.
|
[14] |
于海洋, 杨中林, 刘俊辉, 等. 致密油藏碳化水驱提高采收率方法[J]. 大庆石油地质与开发, 2019, 38(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201902024.htm
YU H Y, YANG Z L, LIU J H, et al. Carbonized water flooding to enhance oil recovery in tight reservoirs[J]. Daqing Petroleum Geology and Development, 2019, 38(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201902024.htm
|
[15] |
芦鑫. 大庆葡南油田碳化水提高采收率可行性研究[D]. 北京: 中国石油大学(北京), 2020.
LU X. Feasibility study on enhanced oil recovery from carbonized water in Daqing Punan Oilfield[D]. Beijing: China University of Petroleum (Beijing), 2020.
|
[16] |
SOHRABI M, EMADI A, FARZANEH S A, et al. A thorough investigation of mechanisms of enhanced oil recovery by carbonated water injection[C]//SPE Annual Technical Conference and Exhibition. Texas: SPE, 2015.
|
[17] |
SHAKIBA M, RIAZI M, AYATOLLAHI S. Impact of connate water saturation on oil recovery and CO2 storage during secondary carbonated water injection[C]//The Ⅰ$ National Conference on Oil and Gas Fields Development. Tehran: Sharif University of Technology, 2015.
|
[18] |
MAHZARI P, TSOLIS P, SOHRABI M, et al. Carbonated water injection under reservoir conditions; in-situ WAG-type EOR[J]. Fuel, 2018, 217: 285-296.
|
[19] |
SEYYEDI M, SOHRABI M, ADAM S. Accepted manuscript quantification of oil recovery efficiency CO2 storage potential, and fluid-rock interactions by CWI in heterogeneous sandstone oil reservoirs[J]. Journal of Molecular Liquids, 2018, 249: 779-788.
|
[20] |
王秀宇, 杨胜来, 杨永忠, 等. CO2封存和提高采收率过程中岩石与饱和水的CO2反应研究[J]. 钻采工艺, 2015, 38(3): 87-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY201503029.htm
WANG X Y, YANG S L, YANG Y Z, et al. Study on CO2 reaction between rock and saturated water during CO2 sequestration and enhanced oil recovery[J]. Drilling and Production Technology, 2015, 38(3): 87-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY201503029.htm
|
[21] |
王琛, 李天太, 高辉, 等. CO2-地层水-岩石相互作用对特低渗透砂岩孔喉伤害程度定量评价[J]. 西安石油大学学报(自然科学版), 2017, 32(6): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201706010.htm
WANG C, LI T T, GAO H, et al. Quantitative evaluation of CO2-formation water-rock interaction on pore throat damage of ultra-low permeability sandstone[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2017, 32 (6): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201706010.htm
|
[22] |
DOU L B, XIAO Y J, GAO H, et al. The study of enhanced displacement efficiency in tight sandstone from the combination of spontaneous and dynamic imbibition[J]. Journal of Petroleum Science and Engineering, 2021, 199: 108327/1-9.
|