Citation: | PENG Xiaofei, YU Wensong, CHEN Raojie. Generalized SOR-like Methods for Solving Absolute Value Equations[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 104-111. DOI: 10.6054/j.jscnun.2024012 |
For solving the absolute value equations Ax-|x|=b, a generalized SOR-like (GSOR) method is proposed by introducing the preconditioning matrix and using the relaxation parameter matrix instead of a single relaxation parameter. With the appropriate preconditioning matrices or parameters, the GSOR method can reduce to an existing SOR-like (NSOR) method or lead to some new SOR-like methods. Moreover, based on the unique solvability of Ax-|x|=b, the convergence theory of the GSOR method is established and its quasi-optimal parameters are given. In particular, by using truncated Neumann expansion, a new preconditioning matrix is constructed and a special GSOR method(GSOR-1) is derived. It has been proved that the GSOR-1 method has the smaller convergence factor than the NSOR method. Numerical tests further reveal that the GSOR-1 method has faster convergence rate and costs less computational times than the NSOR method.
[1] |
ROHN J. A theorem of the alternatives for the equation Ax+B|x|=b[J]. Linear Multilinear Algebra, 2004, 52: 421-426. doi: 10.1080/0308108042000220686
|
[2] |
MANGASARIAN O L. Absolute value programming[J]. Computational Optimization and Applications, 2007, 36: 43-53. doi: 10.1007/s10589-006-0395-5
|
[3] |
COTTLE R W, DANTZIG G. Complementary pivot theory of mathematical programming[J]. Linear Algebra and its Applications, 1968, 1: 103-125. doi: 10.1016/0024-3795(68)90052-9
|
[4] |
ROHN J. System of linear interval equations[J]. Linear Algebra and its Applications, 1989, 126: 39-78. doi: 10.1016/0024-3795(89)90004-9
|
[5] |
COTTLE R W, PANG J S, STONE R. The linear complementarity problem[M]. Boston: Academic Press, 1992.
|
[6] |
FERRIS M C, PANG J S. Engineering and economic applications of complementarity problems[J]. SIAM Reviews, 1997, 39: 669-713. doi: 10.1137/S0036144595285963
|
[7] |
MANGASARIAN O L, MEYER R R. Absolute value equations[J]. Linear Algebra and its Applications, 2006, 419: 359-367. doi: 10.1016/j.laa.2006.05.004
|
[8] |
ROHN J. On unique solvability of the absolute value equation[J]. Optimization Letters, 2009, 3(4): 603-606. doi: 10.1007/s11590-009-0129-6
|
[9] |
HU S L, HUANG Z H, ZHANG Q. A generalized Newton method for absolute value equations associated with se-cond order cones[J]. Journal of Computational and Applied Mathematics, 2011, 235: 1490-1501. doi: 10.1016/j.cam.2010.08.036
|
[10] |
MANGASARIAN O L. A generalized Newton method for absolute value equations[J]. Optimization Letters, 2009, 3: 101-108. doi: 10.1007/s11590-008-0094-5
|
[11] |
于冬梅, 王增伟, 陈彩荣, 等. 求解二阶锥绝对值方程组的非单调光滑牛顿算法[J]. 计算数学, 2023, 45(2): 251-266. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX202302008.htm
YU D M, WANG Z W, CHEN C R, et al. A non-monotone smoothing newton algorithm for absolute value equations associated with second-order cone[J]. Mathematica Numerica Sinica, 2023, 45(2): 251-266. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX202302008.htm
|
[12] |
ROHN J, HOOSHYARBAKHSH V, FARHADSEFAT R. An iterative method for solving absolute value equations and sufficient conditions for unique solvability[J]. Optimization Letters, 2014, 8: 35-44. doi: 10.1007/s11590-012-0560-y
|
[13] |
SALKUYEH D K. The Picard-HSS iteration method for absolute value equations[J]. Optimization Letters, 2014, 8: 2191-2202. doi: 10.1007/s11590-014-0727-9
|
[14] |
EDALATPOUR V, HEZARI D, SALKUYEH D K. A gene-ralization of the Gauss-Seidel iteration method for solving absolute value equations[J]. Applied Mathematics and Computation, 2017, 293: 156-167. doi: 10.1016/j.amc.2016.08.020
|
[15] |
LI C X. A preconditioned AOR iterative method for the absolute value equations[J]. International Journal of Computational Methods, 2017, 14: 1750016/1-12. doi: 10.1142/S0219876217500165
|
[16] |
KE Y F. The new iteration algorithm for absolute value equation[J]. Applied Mathematics Letters, 2020, 99: 105990/1-7. doi: 10.1016/j.aml.2019.07.021
|
[17] |
YU D M, CHEN C R, HAN D R. A modified fixed point iteration method for solving the system of absolute value equations[J]. Optimization, 2022, 71(3): 449-461. doi: 10.1080/02331934.2020.1804568
|
[18] |
DONG X, SHAO X H, SHEN H L. A new SOR-like method for solving absolute value equations[J]. Applied Numerical Mathematics, 2020, 156: 410-421. doi: 10.1016/j.apnum.2020.05.013
|
[19] |
GUO P, WU S L, LI C X. On the SOR-like iteration method for solving absolute value equations[J]. Applied Mathematics Letters, 2019, 97: 107-113. doi: 10.1016/j.aml.2019.03.033
|
[20] |
HUANG B H, LI W. A modified SOR-like method for absolute value equations associated with second order cones[J]. Journal of Computational and Applied Mathematics, 2022, 400: 113745/1-20. doi: 10.1016/j.cam.2021.113745
|
[21] |
KE Y F, MA C F. SOR-like iteration method for solving absolute value equations[J]. Applied Mathematics and Computation, 2017, 311: 195-202. doi: 10.1016/j.amc.2017.05.035
|
[22] |
ZHANG J L, ZHANG G F, LIANG Z Z. A modified gene-ralized SOR-like method for solving an absolute value equation[J]. Linear and Multilinear Algebra, 2023, 71(9): 1578-1595. doi: 10.1080/03081087.2022.2066614
|
[23] |
GOLUB G H, WU X, YUAN J Y. SOR-like methods for augment systems[J]. BIT Numerical Mathematics, 2001, 41: 71-85. doi: 10.1023/A:1021965717530
|
[24] |
YOUNG D M. Iterative solution of large linear systems[M]. New York: Academic Press, 1971.
|
[25] |
BAI Z Z, PARLETT B N, WANG Z Q. On generalized successive overrelaxation methods for augmented linear systems[J]. Numerische Mathematik, 2005, 102: 1-38. doi: 10.1007/s00211-005-0643-0
|
[26] |
DUBOIS P F, GREENBAUM A, RODRIGUE G H. Approximating the inverse of a matrix for use in iterative algorithms on vector processors[J]. Computing, 1979, 22: 257-268. doi: 10.1007/BF02243566
|