Citation: | HUANG Gan, LI Meiting, ZHAO Yanli, CAO Qin, ZHANG Xin, LI Fei, LI Yonghua, WANG Yaqin. Comprehensive Evaluation of High Temperature Physiological Response and Heat Tolerance of Different Cut Chrysanthemum Cultivars[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 92-103. DOI: 10.6054/j.jscnun.2024011 |
In order to select the heat-resistant cultivars of spray-cut chrysanthemum and establish a comprehensive evaluation method for heat tolerance, the tolerance toward high temperature stress of 12 cut chrysanthemum cultivars were studied. The results revealed that as the stress temperature rose, the physiological and biochemical indexes showed corresponding changes, while the trend of changes varied significantly, indicating differences in heat tolerance among different varieties. Furthermore, four principal components were extracted by principal component analysis. Membership function analysis and cluster analysis categorized the 12 cultivars into four groups: a heat-sensitive group that included 'Kaisahong', a group with moderate heat resistance consisting of 'Jimucheng''Nuoxicheng''Duolunduo', a more heat-resistant group with 'Kundi''Ruibai''Zijingling''Yinyang''Lvjing-ling', and a heat-resistant group comprising 'Weinisi' and 'Kaisahuang', which were potential candidates for cultivation in high-temperature zones. And building on this classification, the stepwise regression method was used to set up a multiple regression equation that incorporates the content of malondialdehyde(MDA), the quantum yield for electron transfer(φEo), and the mass fraction of solubel suqar(SS) as reliable indicators for assessing heat resistance.
[1] |
马婉茹, 房伟民, 王海滨, 等. 多头切花菊品种茎、枝特性评价体系构建与品种评价[J]. 中国农业科学, 2019, 52(14): 2515-2524. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201914011.htm
MA W R, FANG W M, WANG H B, et al. Establishment of appraisal system for the stem and branch characteristics and varieties evaluation of spray cut chrysanthemum[J]. Scientia Agricultura Sinica, 2019, 52(14): 2515-2524. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201914011.htm
|
[2] |
徐丹彬, 郭方其, 吴超, 等. 切花多头菊冬季设施栽培品种筛选与评价[J]. 中国农学通报, 2021, 37(33): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202133008.htm
XU D B, GUO F Q, WU C, et al. Screening and evaluation of spray cut chrysanthemum cultivars under plastic greenhouse cultivation in winter[J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202133008.htm
|
[3] |
陈发棣, 陈素梅, 房伟民, 等. 五个小菊品种(或种)的耐热性鉴定[J]. 上海农业学报, 2001(3): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB200103018.htm
CHEN F D, CHEN S M, FANG W M, et al. Determining heat tolerance for chrysanthemum vestitum and four ch. morifolium cultivars with small flowers[J]. Acta Agriculturae Shanghai, 2001(3): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB200103018.htm
|
[4] |
陈碧露, 罗素梅, 刘小平, 等. 不同品种月季的耐热性鉴定[J]. 江苏农业科学, 2020, 48(13): 178-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY202013035.htm
CHEN B L, LUO S M, LIU X P, et al. Identification of heat tolerance of different chinese rose varieties[J]. Jiangsu Agricultural Sciences, 2020, 48(13): 178-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY202013035.htm
|
[5] |
侯赵玉, 龚亦钊, 钱祎, 等. 芍药耐热性评价及其鉴定指标筛选[J]. 中国农业科学, 2023, 56(23): 4742-4756. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK202323015.htm
HOU Z Y, GONG Y Z, QIAN Y, et al. Evaluation of heat tolerance of Herbaceous peony and screening of its identification indices[J]. Scientia Agricultura Sinica, 2023, 56(23): 4742-4756. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK202323015.htm
|
[6] |
凌瑞, 戴中武, 代晓雨, 等. 8个绣球品种耐热性综合评价与耐热指标筛选[J]. 热带作物学报, 2021, 42(8): 2209-2218. https://www.cnki.com.cn/Article/CJFDTOTAL-RDZX202108012.htm
LING R, DAI Z W, DAI X Y, et al. Evaluation of heat to-lerance and screening the index for the assessment of heat tolerance in cultivars of Hydrangea[J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2209-2218. https://www.cnki.com.cn/Article/CJFDTOTAL-RDZX202108012.htm
|
[7] |
TIAN Z G, YANG Y, WANG F. A comprehensive evaluation of heat tolerance in nine cultivars of marigold[J]. Horticulture Environment & Biotechnology, 2015, 56(6): 749-755.
|
[8] |
石思云, 喇燕菲, 王翊. 十个铁线莲品种植株形态和生理特性对高温胁迫的响应[J]. 热带农业科学, 2022, 42(5): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-RDNK202205009.htm
SHI S Y, LA Y F, WANG Y. Responses of plant morpho-logy and physiological characteristics to high temperature stress in 10 species of Clematis cultivars[J]. Chinese Journal of Tropical Agriculture, 2022, 42(5): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-RDNK202205009.htm
|
[9] |
孙宪芝, 郑成淑, 王秀峰. 高温胁迫对切花菊'神马'光合作用与叶绿素荧光的影响[J]. 应用生态学报, 2008(10): 2149-2154.
SUN X Z, ZHENG C S, WANG X F. Effects of high temperature stress on photosynthesis and chlorophyll fluorescence of cut flower chrysanthemum (Dendranthema grandiflora 'Jinba')[J]. Chinese Journal of Applied Ecology, 2008(10): 2149-2154.
|
[10] |
李俊香, 温超, 刘凤栾, 等. 温度对切花菊'深志'侧芽形成的影响[J]. 中国农业大学学报, 2014, 19(1): 74-79.
LI J X, WEN C, LIU F L, et al. Effect of temperature on lateral bud formation of Chrysanthemum morifolium 'fucashi'[J]. Journal of China Agricultural University, 2014, 19(1): 74-79.
|
[11] |
孔令接, 陈言博, 王亚琴. 不同夏菊品种的耐热性研究[J]. 园艺学报, 2019, 46(12): 2437-2448. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201912017.htm
KONG L J, CHEN Y B, WANG Y Q. Studies on heat to-lerance of different summer chrysanthemum cultivars[J]. Acta Horticulturae Sinica, 2019, 46(12): 2437-2448. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201912017.htm
|
[12] |
张留全, 王晗璇, 胡云鹏, 等. 广东主要食用菊品种耐热性分析[J]. 仲恺农业工程学院学报, 2020, 33(1): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJX202001004.htm
ZHANG L Q, WANG H X, HU Y P, et al. Analysis of heat tolerance of main edible chrysanthemum varieties in Guangdong[J]. Journal of Zhongkai University of Agriculture and Technology, 2020, 33(1): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJX202001004.htm
|
[13] |
付凯. 3个菊花品种对高温胁迫的耐受性研究[J]. 上海农业科技, 2017(3): 83-85;87. https://www.cnki.com.cn/Article/CJFDTOTAL-SLYK201703052.htm
|
[14] |
凌瑞, 董钠, 刘惠斌, 等. 应用Logistic方程测定八个绣球品种的耐热性[J]. 北方园艺, 2021(11): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY202111010.htm
LING R, DONG N, LIU H B, et al. Heat resistance of eight cultivars of Hydrangea macrophylla by logistic equation[J]. Northern Horticulture, 2021(11): 63-69. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY202111010.htm
|
[15] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
|
[16] |
STRASSER R J, TSIMILLI-MICHAEL M, QIANG S, et al. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. BBA-Bioenergetics, 2010, 1797(6/7): 1313-1326.
|
[17] |
YUSUF M A, KUMAR D, RAJWANSHI R, et al. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements[J]. BBA-Bioenergetics, 2010, 1797(8): 1428-1438. doi: 10.1016/j.bbabio.2010.02.002
|
[18] |
WAHID A, GELANI S, ASHRAF M, et al, Heat tolerance in plants: an overview[J]. Environmental and Experimental Botany, 2007, 61(3).
|
[19] |
赵亚洲, 卓丽环, 张琰. 2种红枫的高温半致死温度与耐热性[J]. 上海农业学报, 2006, 22(2): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB200602012.htm
ZHAO Y Z, ZHUO L H, ZHANG Y. High semi-lethal temperature and heat tolerance of two Japanese maple varieties[J]. Acta Agriculturae Shanghai, 2006, 22(2): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB200602012.htm
|
[20] |
BAHLER C, HILL R R, BYERS R A. Comparison of logistic and weibull functions: the effect of temperature on cumulative germination of alfalfa[J]. Crop Science, 1989, 29(1): 142-142. doi: 10.2135/cropsci1989.0011183X002900010032x
|
[21] |
杨曦. 茶用菊耐热体细胞无性系变异体的研究[D]. 武汉: 华中农业大学, 2011.
YANG X. Study on heat-resistant somaclonal variants of tea-applied chrysanthemum[D]. Wuhan: Huazhong Agricultural University, 2011.
|
[22] |
杜秀敏, 殷文璇, 赵彦修, 等. 植物中活性氧的产生及清除机制[J]. 生物工程学报, 2001, 17(2): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SHWU200102002.htm
DU X M, YIN W X, ZHAO Y X, et al. The production and scavenging of reactive oxygen species in plants[J]. Chinese Journal of Biotechnology, 2001, 17(2): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-SHWU200102002.htm
|
[23] |
王雨婷, 王智真, 赵婷, 等. 24-表油菜素内酯预处理对干旱胁迫下葡萄幼苗抗氧化系统和渗透调节物质的影响[J]. 西北植物学报, 2019, 39(3): 489-497. https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX201903015.htm
WANG Y T, WANG Z Z, ZHAO T, et al. Physiological responses to high temperature stress in Prunus avium L[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(3): 489-497. https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX201903015.htm
|
[24] |
苏小雨, 高桐梅, 张鹏钰, 等. 基于主成分分析及隶属函数法对芝麻苗期耐热性综合评价[J]. 作物杂志, 2023(4): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ202304008.htm
SU X Y, GAO T M, ZHANG P Y, et al. Comprehensive evaluation of heat resistance of Sesame seedlings based on principal component analysis and membership function method[J]. Crops, 2023(4): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ202304008.htm
|
[25] |
MANISHA C, SHALINI J. Morpho-physiological and biochemical characterization of chrysanthemum varieties for early flowering under heat stress[J]. South African Journal of Botany, 2022, 146: 603-613. doi: 10.1016/j.sajb.2021.11.035
|
[26] |
RENU K C, SHAKTI C. Wheat cultivars differing in heat tolerance show a differential response to oxidative stress during monocarpic senescence under high temperature stress[J]. Protoplasma, 2015, 252(5): 1241-1251. doi: 10.1007/s00709-015-0755-z
|
[27] |
张映婵, 韩胜男, 王璐, 等. 六个大丽花品种对高温胁迫的生理响应及耐热性综合评价[J]. 植物科学学报, 2023, 41(2): 245-255. https://www.cnki.com.cn/Article/CJFDTOTAL-WZXY202302010.htm
ZHANG Y C, HAN S N, WANG L, et al. Comprehensive evaluation of the physiological response and heat tolerance of six Dahlia pinnata Cav. cultivars to high-temperature stress[J]. Plant Science Journal, 2023, 41(2): 245-255. https://www.cnki.com.cn/Article/CJFDTOTAL-WZXY202302010.htm
|
[28] |
WANG Y X, YA H U, CHEN B H, et al. Physiological mechanisms of resistance to cold stress associated with 10 elite apple rootstocks[J]. Journal of Integrative Agriculture, 2018, 17(4): 857-866. doi: 10.1016/S2095-3119(17)61760-X
|
[29] |
徐倩, 邬梦, 曾心美, 等. 木芙蓉对淹水胁迫的响应及其耐涝性综合评价[J]. 热带亚热带植物学报, 2022, 30(2): 202-212. https://www.cnki.com.cn/Article/CJFDTOTAL-RYZB202202007.htm
XU Q, WU M, ZENG X M, et al. Response of Hibiscus mutabilis to waterlogging stress and comprehensive evaluation of waterlogging tolerance[J]. Journal of Tropical and Subtropical Botany, 2022, 30(2): 202-212. https://www.cnki.com.cn/Article/CJFDTOTAL-RYZB202202007.htm
|
[30] |
周亚峰, 许彦宾, 王艳玲, 等. 基于主成分-聚类分析构建甜瓜幼苗耐冷性综合评价体系[J]. 植物学报, 2017, 52(4): 520-529. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT201704010.htm
ZHOU Y F, XU Y B, WANG Y L, et al. Establishment of a comprehensive evaluation system for chilling tolerance in Melon seedlings based on principal component analysis and cluster analysis[J]. Chinese Bulletin of Botany, 2017, 52(4): 520-529. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT201704010.htm
|
[31] |
聂林杰, 孙泽硕, 程祥飞, 等. 低温胁迫下菊花叶片不饱和脂肪酸质量分数对光系统Ⅱ功能的影响[J]. 东北林业大学学报, 2020, 48(11): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DBLY202011011.htm
NIE L J, SUN Z S, CHENG X F, et al. Effect of unsatura-ted fatty acid on PSⅡ function in chrysanthemum(Dendranthema morifolium) leaves under low temperature stress[J]. Journal of Northeast Forestry University, 2020, 48(11): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DBLY202011011.htm
|
[32] |
王凯红, 凌家慧, 张乐华, 等. 两种常绿杜鹃亚属幼苗耐热性的主成分及隶属函数分析[J]. 热带亚热带植物学报, 2011, 19(5): 412-418. https://www.cnki.com.cn/Article/CJFDTOTAL-RYZB201105003.htm
WANG K H, LING J H, ZHANG Y H, et al. Analysis of principal components and subordinate function on heat tolerance of two seedlings of Rhododendron subgenus Hymenanthes[J]. Journal of Tropical and Subtropical Botany, 2011, 19(5): 412-418. https://www.cnki.com.cn/Article/CJFDTOTAL-RYZB201105003.htm
|
[33] |
刘志高, 邵伟丽, 申亚梅, 等. 铁线莲品种耐热性分析及评价指标筛选[J]. 核农学报, 2020, 34(1): 203-213. https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB202001021.htm
LIU Z G, SHAO W L, SHEN Y M, et al. Evaluation of heat tolerance and screening the index for the assessment of heat tolerance in cultivars of Clematis[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 203-213. https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB202001021.htm
|
[34] |
刘婉迪, 王威, 谢倩, 等. 9个杜鹃品种的高温半致死温度与耐热性评价[J]. 西北林学院学报, 2018, 33(5): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-XBLX201805016.htm
LIU W D, WANG W, XIE Q, et al. Heat tolerance and high semi-lethal temperature of nine Rhododendron cultivars[J]. Journal of Northwest Forestry University, 2018, 33(5): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-XBLX201805016.htm
|
[35] |
王玲玲, 罗艳, 马蓉蓉, 等. 不同切花菊品种响应盐胁迫的生理特性研究[J]. 山东农业科学, 2023, 55(11): 88-95. https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI202311013.htm
WANG L L, LUO Y, MA R R, et al. Physiological characteristics of different varieties of cut chrysanthemum response to salt stress[J]. Northern Horticulture Shandong Agricultural Sciences, 2023, 55(11): 88-95. https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI202311013.htm
|
[36] |
虎淘淘, 罗艳, 虎瑛, 等. 六个切花彩菊品种对碱胁迫的生理响应及耐碱性评价[J]. 北方园艺, 2023(17): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY202317012.htm
HU T T, LUO Y, HU Y, et al. Physiological response of six cut chrysanthemum varieties to alkali stress and evaluation of alkali tolerance[J]. Northern Horticulture, 2023(17): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BFYY202317012.htm
|
1. |
管钰晴,唐冬梅,傅云霞,孙佳媛,韩志国,张波,孔明,曹程明,雷李华. 穆勒椭偏标定方法中LM算法研究. 红外与激光工程. 2020(08): 168-176 .
![]() | |
2. |
汪娟,冀丽娜,白芸,黄佐华. 单波长椭偏法测量各向异性晶体光学参数的研究. 激光与光电子学进展. 2020(15): 224-232 .
![]() |