• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
JIANG Lanlan, CHAI Jiongjiong, XU Jintao, ZHANG Lianke, WANG Lei, WANG Xiaoshu. Effect of Nanoparticles on Thermophysical Properties of Tetradecane Phase Change Materials[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 53-62. DOI: 10.6054/j.jscnun.2024007
Citation: JIANG Lanlan, CHAI Jiongjiong, XU Jintao, ZHANG Lianke, WANG Lei, WANG Xiaoshu. Effect of Nanoparticles on Thermophysical Properties of Tetradecane Phase Change Materials[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 53-62. DOI: 10.6054/j.jscnun.2024007

Effect of Nanoparticles on Thermophysical Properties of Tetradecane Phase Change Materials

More Information
  • Received Date: December 15, 2023
  • Available Online: April 29, 2024
  • Tetradecane nanocomposite phase change materials with mass fractions of 1%, 2%, 3%, 4%, and 5% were prepared using tetradecane as a base fluid, and nanoparticles Al2O3, CuO, MgO, and multi-walled carbon nanotubes (MWCNT) as additives, respectively. The morphology structure characterization and thermophysical properties were studied. The results showed that the addition of nanoparticles caused little change in the phase change temperature, and the latent heat values were reduced by 0.66% to 14.43%; thermal conductivity was significantly enhanced and increased with the increase in the mass fraction of nanoparticles; decomposition of the nanocomposite phase change materials occurred above 50 ℃, which was higher than the range of application; phase change time of the nanocomposite phase change materials was significantly shortened compared with that of pure tetradecane. The optimal nanoparticle was MWCNT with an optimal mass fraction of 3%, a thermal conductivity of 0.189 7 W/(m·K), and a latent heat value of 199.7 J/g, which can be used as a potential phase-change cooling storage material.

  • [1]
    ARIDI R, YEHYA A. Review on the sustainability of phase-change materials used in buildings[J]. Energy Conversion and Management: X, 2022: 100237/1-20.
    [2]
    骆强, 曲芳, 姚志鹏, 等. 典型航空电缆的热解动力学研究[J]. 华南师范大学学报(自然科学版), 2021, 53(5): 30-36. doi: 10.6054/j.jscnun.2021072

    LUO Q, QU F, YAO Z P, et al. Research on pyrolysis kinetics of typical aviation cable[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 30-36. doi: 10.6054/j.jscnun.2021072
    [3]
    ZHANG N, YUAN Y P, DU Y X, et al. Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage[J]. Energy, 2014, 78: 950-956. doi: 10.1016/j.energy.2014.10.092
    [4]
    张泠, 董媛媛, 刘忠兵. 相变墙体柔性用能预冷策略优化与敏感性分析[J]. 华南师范大学学报(自然科学版), 2023, 55(2): 34-40. doi: 10.6054/j.jscnun.2023017

    ZHANG L, DONG Y Y, LIU Z B. Optimization of precooling strategy and sensitivity analysis of energy flexibility of the phase change wall[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 34-40. doi: 10.6054/j.jscnun.2023017
    [5]
    LI S F, LIU Z H, WANG X J. A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials[J]. Applied Energy, 2019, 255: 113667/1-33.
    [6]
    MENG B B, ZHANG X L, HUA W S, et al. Development and application of phase change material in fresh e-commerce cold chain logistics: a review[J]. Journal of Energy Storage, 2022, 55: 1454-1469.
    [7]
    ZHAO Y, ZHANG X L, XU X F, et al. Development of composite phase change cold storage material and its application in vaccine cold storage equipment[J]. Journal of Energy Storage, 2020, 30: 101455/1-12.
    [8]
    HU L, HAO W, JIANG R, et al. Preparation and thermal properties of modified binary paraffin-Hexadecylamine shaped composite phase-change energy storage materials[J]. Journal of Thermoplastic Composite Materials, 2023, 36(7): 2718-2736. doi: 10.1177/08927057221108399
    [9]
    LIN N Z, LI C C, ZHANG D Y, et al. Emerging phase change cold storage materials derived from sodium sulfate decahydrate[J]. Energy, 2022, 245: 123294/1-9.
    [10]
    LI C C, LI M, LI Y X. Tailored calcium chloride hexahydrate as a composite phase change material for cold storage[J]. Journal of Energy Storage, 2022, 56: 105798/1-14.
    [11]
    HAN L, ZHANG X, JI J, et al. Research progress on the influence of nano-additives on phase change materials[J]. Journal of Energy Storage, 2022, 55: 1538-1555.
    [12]
    LIU Y, LIU W J, ZHANG S H, et al. Preparation and characterization of new nano-particle mixed as thermal storage material[J]. Applied Thermal Engineering, 2019, 163: 114386/1-6.
    [13]
    MUZHANJE A T, HASSAN M A, OOKAWARA S, et al. An overview of the preparation and characteristics of phase change materials with nanomaterials[J]. Journal of Energy Storage, 2022, 51: 104353/1-22.
    [14]
    SUN Z, CHEN Z, LIU M. Preparation, thermal properties and charging/discharging characteristics of sodium acetate/stearic acid/octadecyl alcohol composite as phase change materials[J]. Applied Thermal Engineering, 2022, 206: 118143/1-12.
    [15]
    唐彪, 蒋洪伟, 郭媛媛, 等. 基于相变操控的电润湿显示油墨填充与封装工艺研究[J]. 华南师范大学学报(自然科学版), 2016, 48(1): 42-46. http://journal-n.scnu.edu.cn/cn/article/id/3778

    TANG B, JIANG H W, GUO Y, et al. A novel oil-filling and coupling method based on phase manipulation for electrofluidic displays[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(1): 42-46. http://journal-n.scnu.edu.cn/cn/article/id/3778
    [16]
    TANG A, CHEN W, SHAO X, et al. Experimental investigation of aluminum nitride/carbon fiber-modified composite phase change materials for battery thermal management[J]. International Journal of Energy Research, 2022, 46(9): 12737-12757. doi: 10.1002/er.8040
    [17]
    MUTHOKA M J, ZHANG X L, XU X F. Experimental investigation on supercooling, thermal conductivity and stability of nanofluid based composite phase change material[J]. Journal of Energy Storage, 2018, 17: 47-55. doi: 10.1016/j.est.2018.02.006
    [18]
    SHARMA R K, GANESAN P, TYAGI V V, et al. Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM)[J]. Applied Thermal Engineering, 2016, 99: 1254-1262. doi: 10.1016/j.applthermaleng.2016.01.130
    [19]
    PRAKASH R, MUTHARAYAPPA M, GURUVANNA M K, et al. Energy storage and milk chilling performance of metal oxide nanofluids[J]. Food and Bioproducts Processing, 2023, 140: 46-59. doi: 10.1016/j.fbp.2023.04.004
    [20]
    WU X H, GAO M T, WANG K, et al. Experimental study of the thermal properties of a homogeneous dispersion system of a paraffin-based composite phase change materials[J]. Journal of Energy Storage, 2021, 36: 102398/1-6.
    [21]
    WANG X J, LI X F, XU Y H, et al. Thermal energy storage characteristics of Cu-H2O nanofluids[J]. Energy, 2014, 78: 212-217. doi: 10.1016/j.energy.2014.10.005
    [22]
    BASKAR I, CHELLAPANDIAN M, JEYASUBRAMANIAN K. LA-PA eutectic/nano-SiO2 composite phase change material for thermal energy storage application in buildings[J]. Construction and Building Materials, 2022, 338: 127663/1-8.
    [23]
    WU T, XIE N, NIU J, et al. Preparation of a low-temperature nanofluid phase change material: MgCl2-H2O eutectic salt solution system with multi-walled carbon nanotubes (MWCNTs)[J]. International Journal of Refrigeration, 2020, 113: 136-144. doi: 10.1016/j.ijrefrig.2020.02.008

Catalog

    Article views (72) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return