Citation: | HE Jingting, QI Guisheng, YANG Kun, JI Caili, JIA Yusheng, GUO Yujin, ZHANG Rongrong, LI Ning, WANG Yaning, ZENG Zhongyu, FAN Xiaolong. Low-crystallinity B-Co3O4 Nano-particles for Electrocatalytic Nitrate to Ammonia[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 36-43. DOI: 10.6054/j.jscnun.2024005 |
A simple precipitation calcination process was used to synthesize B-Co3O4 NPs and apply them as electrocatalytic reduction of nitrate by ammonia. Research has found that B-Co3O4 NPs have high electrocatalytic activity and when the voltage is -0.8(V vs. RHE). It attains an impressive NH3 yield of 20 mg/(h ·cm2) and 94% (FE). In NaOH (1 mol/L) solution containing 0.1 mol/L NaNO3. When the voltage is -0.6 V (vs. RHE), it corresponds to a NH3 yield of 17.2 mg/(h ·cm2) and 95% FE. The excellent electrochemical performance of electrode material B-Co3O4 NPs is attributed to the effective inhibition of hydrogen evolution reaction by B—O in the electrocatalytic process. The low crystallinity and special porous structure of B-Co3O4 NPs effectively improve the adsorption and reduction activity of NO3-, promoting electron transfer and transfer.
[1] |
李育磊, 刘玮, 董斌琦, 等. "双碳"目标下中国绿氢合成氨发展基础与路线[J]. 储能科学与技术, 2022, 11(9): 2891-2899. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX202209014.htm
LI Y L, LIU W, DONG B Q, et al. Green hydrogen ammonia synthesis in China under double carbon target: research on development basis and route[J]. Energy Storage Science and Technology, 2022, 11(9): 2891-2899. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX202209014.htm
|
[2] |
宋豫秦, 应验. 碳达峰与碳中和背景下蓝碳开发价值理论与建议探讨[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 93-99. doi: 10.6054/j.jscnun.2022048
SONG Y Q, YING Y. The value, theory and suggestion concerning blue carbon development against the background of Carbon Peak and Carbon Neutrality[J]. Journal of South China Normal University(Natural Science Edition), 2022, 54(3): 93-99. doi: 10.6054/j.jscnun.2022048
|
[3] |
LI Z, WEN G, LIANG J, et al. High-efficiency nitrate electro reduction to ammonia on electrodeposited cobalt-phosphorus alloy film[J]. Chemical Communication, 2021, 57, 9720-9723. doi: 10.1039/D1CC02612G
|
[4] |
JIN H Y, LI L Q, LIU X, et al. Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction[J]. Advanced Materials, 2019, 31(32): 1902709/1-8.
|
[5] |
詹溯, 章福祥. 常温常压电催化合成氨的研究进展[J]. 化学学报, 2021, 79(2): 146-157. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB202102003.htm
ZHAN S, ZHANG F X. Recent progress on electrocatalytic synthesis of ammonia under amibent conditions[J]. Acta Chimica Sinica, 2021, 79(2): 146-157. https://www.cnki.com.cn/Article/CJFDTOTAL-HXXB202102003.htm
|
[6] |
LI J, ZHAN G, YANG J, et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters[J]. Journal of the American Chemical Society, 2020, 142(15): 7036-7046. doi: 10.1021/jacs.0c00418
|
[7] |
WANG S D, YOUNG B R, et al. Increasing electrocatalytic nitrate red-uction activity by controlling adsorption through PtRu alloying[J]. Journal of Catalysis, 2021, 395: 143-154. doi: 10.1016/j.jcat.2020.12.031
|
[8] |
YUAN E X, LI J P, LI Q, et al. Preliminary study on cyclohexane catalytic oxidation over magnesium-doped tricobalt tetraoxide[J]. Journal of Materials Research, 2023, 55(6): 136-141.
|
[9] |
MAI S X, CHENG G, YU L, et al. Preparation of cobalt oxides on carbon fiber paper and its application in electrocatalytic oxygen evolution reaction[J]. Inorganic Chemicals Industry, 2020, 52(1): 87-92.
|
[10] |
HAO J X, PENG S L, LI H Q, et al. A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(33): 16094-16100. doi: 10.1039/C8TA06349D
|
[11] |
李亚萍, 孙祥林, 陈晓, 等. 过硫酸盐增强ZnO@N, C-Co3O4光电催化降解四溴双酚A的性能研究[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 43-53. doi: 10.6054/j.jscnun.2021042
LI Y P, SUN X L, CHEN X, et al. The photoelectroc-atalytic degradation of tetrabromo bisphenol A with persulfate-enhanced ZnO@N, C-Co3O4[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(3): 43-53. doi: 10.6054/j.jscnun.2021042
|
[12] |
LIU X, XIE L, DENG J F, et al. Study on performance of sponge supported Co-B catalyst for hydrogen generation from catalytic hydrolysis of sodium borohydride[J]. Inorganic Chemicals Industry, 2023, 55(12): 146-151.
|
[13] |
周佳盈, 双鹏, 肖煌, 等. 嵌入式四氧化三钴负极材料的赝电容性能研究[J]. 华南师范大学学报(自然科学版), 2023, 55(2): 1-9. doi: 10.6054/j.jscnun.2023013
ZHOU J Y, LI S P, XIAO H, et al. Study on pseudocapacitance of embedded cobalt tetroxide anode materials[J]. Journal of South China Normal University(Natural Science Edition), 2023, 55(2): 1-9. doi: 10.6054/j.jscnun.2023013
|
[14] |
YU M Q, WEIDENTHALER C, WANG Y, et al. Surface boron modulation on cobalt oxide nanocrystals for electrochemical oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2022, 61: e202211543/1-8.
|
[15] |
XIANG K, XU Z C, QU T T, et al. Two dimensional oxygen-vacanc-rich Co3O4 nanosheets with excellent supercapacitor performances[J]. Chemical Communications, 2017, 53(92): 12410-12413. doi: 10.1039/C7CC07515D
|
[16] |
刘宇飞, 杨玉蓉, 孙政新, 等. 氧空位调控BiVO4纳米片的制备及光解水制氧性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 22-27. doi: 10.6054/j.jscnun.2022039
LIU Y F, YANG Y R, SUN Z G, et al. The synthesis of oxygen vacancy-mediated BiVO4 nanosheets and their performance in photocatalytic water splitting O2 evolution[J]. Journal of South China Normal University(Natural Science Edition), 2022, 54(3): 22-27. doi: 10.6054/j.jscnun.2022039
|
[17] |
BOLAND J B, HARVEY A, TIAN R, et al. Liquid phase exfoliation of Mo nanosheets for lithium ion battery applications[J]. Nanoscale Advances, 2019, 1(4): 1560-1570.
|
[18] |
LEI W, JIN H, GAO J, et al. Efficient hydrogen generation from the NaBH4 hydrolysis by amorphous Co-Mo-B alloy supported on reduced graphene oxide[J]. Journal of Materials Research, 2021, 36: 4154-4168.
|
[19] |
ZHAI H Y, YAN X R, ZOU Z L, et al. Preparation of B-Co3O4/C composite nanomaterials and their electrocatalytic performance for oxygen evolution reaction[J]. Chemistry, 2023, 86(2): 199-206.
|
[20] |
LI L Q, TANG C, CUI X Y, et al. Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction[J]. Angewandte Chemie International Edition, 2021, 60(25): 14131-14137.
|
[21] |
DIMA G E, DE VOOYS A C A, KOPER M T M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions[J]. Journal of Electroanalytical Chemistry, 2003, 554: 15-23.
|