Citation: | JI Zean, CHONG Cheng Tung, LI Xing, LI Jun. Combustion Characteristics of Ternary Blends of Ethanol Spray/Ammonia/Methane[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 27-35. DOI: 10.6054/j.jscnun.2024004 |
A swirl spray burner is used to measure and analyze the flame structure, chemiluminescence signals of OH* and NH2*, flame spectra and pollutant emissions during combustion, while examining the effects of varying methane, ethanol and ammonia mixture fuel composition and atomizing air-to-liquid ratios (ALR) on combustion and the trends of NO, NO2 and CO emissions. Even though the use of ammonia results in high NOx emissions, the use of ternary blends for co-combustion, especially when ethanol mole fraction is high, the CO and NO emissions can be reduced. Within the equivalence ratio of 0.45~0.70, increasing the ALR results in more complete spray atomization, which promotes mixing of fuel vapour with gas, leading to improved combustion and subsequently reduced CO emissions. The use of ternary blends and control the combustion parameters are measures that enable effective ammonia combustion, which serves as a guide for pollutant emission reductions and ammonia utilization for the industries.
[1] |
中华人民共和国国务院新闻办公室. 新时代的中国能源发展[Z]. 2020.
|
[2] |
CONTI J, HOLTBERG P, DIEFENDERFER J, et al. International energy outlook 2016 with projections to 2040[M]. Washington: Energy Information Administration, 2016.
|
[3] |
罗俊伟, 张泽武, 查小健, 等. 高温预热氨煤掺混MILD燃烧反应特性[J]. 华南师范大学学报(自然科学版), 2023, 55(5): 1-8. doi: 10.6054/j.jscnun.2023060
LUO J W, ZHANG Z W, CHA X J, et al. Reaction characteristics of coal/NH3, co-combustion affected by the highly preheated temperature under MILD combustion mode[J] Journal of South China Normal University (Natural Science Edition), 2023, 55(6): 1-8 doi: 10.6054/j.jscnun.2023060
|
[4] |
VALERA-MEDINA A, MARSH R, RUNYON J, et al. Ammonia-methane combustion in tangential swirl burners for gas turbine power generation[J]. Applied Energy, 2017, 185: 1362-1371. doi: 10.1016/j.apenergy.2016.02.073
|
[5] |
VALERA-MEDINA A, MORRIS S, RUNYON J, et al. Ammonia, methane and hydrogen for gas turbines[J]. Energy Procedia, 2015, 75: 118-123. doi: 10.1016/j.egypro.2015.07.205
|
[6] |
OTOMO J, KOSHI M, MITSUMORI T, et al. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion[J]. International Journal of Hydrogen Energy, 2018, 43(5): 3004-3014. doi: 10.1016/j.ijhydene.2017.12.066
|
[7] |
ARIEMMA G B, SORRENTINO G, RAGUCCI R, et al. Ammonia/methane combustion: stability and NOx emissions[J]. Combustion and Flame, 2022, 241: 112071/1-3.
|
[8] |
高志崇, 王子瑛. 醇燃烧反应机理探讨[J]. 辽宁大学学报(自然科学版), 2003(1): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-LNDZ200301016.htm
GAO Z C, WANG Z Y. Exploration of the mechanism of alcohol combustion reaction[J] Journal of Liaoning University (Natural Science Edition), 2003(1): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-LNDZ200301016.htm
|
[9] |
TAO Y, SMITH G P, WANG H. Critical kinetic uncertainties in modeling hydrogen/carbon monoxide, methane, methanol, formaldehyde, and ethylene combustion[J]. Combustion and Flame, 2018, 195: 18-29. doi: 10.1016/j.combustflame.2018.02.006
|
[10] |
FISHER C J. A study of rich ammonia/oxygen/nitrogen flames[J]. Combustion and Flame, 1977, 30: 143-149. doi: 10.1016/0010-2180(77)90060-8
|
[11] |
倪梓皓. 生物质液体燃料燃烧反应动力学及燃烧火焰特性研究[D]. 昆明: 昆明理工大学, 2022.
NI Z H. Research on the combustion kinetics and flame characteristics of biomass liquid fuel[D]. Kunming: Kunming University of Science and Technology, 2022.
|
[12] |
SOVOVÁ K, DRYAHINA K, SPANEL P, et al. A study of the composition of the products of laser-induced breakdown of hexogen, octogen, pentrite and trinitrotoluene using selected ion flow tube mass spectrometry and UV-Vis spectrometry[J]. The Analyst, 2010, 135: 1106-1114. doi: 10.1039/b926425f
|
[13] |
CHAI W S, BAO Y, JIN P, et al. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111254/1-19.
|
[14] |
ZAKAZNOV V F, KURSHEVA L A, FEDINA Z I. Determination of normal flame velocity and critical diameter of flame extinction in ammonia-air mixture[J]. Combustion, Explosion and Shock Waves, 1978, 14: 710-713. doi: 10.1007/BF00786097
|