• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LI Xue, LIU Li, HE Wenhao, ZHANG Runqing, WANG Xiaohui. Study on the Microscopic Mechanism of Adsorption and Diffusion Behavior of CO2 Storage in the Cap Bed[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 18-26. DOI: 10.6054/j.jscnun.2024003
Citation: LI Xue, LIU Li, HE Wenhao, ZHANG Runqing, WANG Xiaohui. Study on the Microscopic Mechanism of Adsorption and Diffusion Behavior of CO2 Storage in the Cap Bed[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 18-26. DOI: 10.6054/j.jscnun.2024003

Study on the Microscopic Mechanism of Adsorption and Diffusion Behavior of CO2 Storage in the Cap Bed

More Information
  • Received Date: May 29, 2023
  • Available Online: April 29, 2024
  • To address the critical issues related to carbon dioxide (CO2) geological sequestration in the context of greenhouse gas mitigation, The adsorption and diffusion behaviors of CO2 within SiO2 slits were investigated using molecular simulation techniques, including grand canonical Monte Carlo simulations, molecular dynamics simulations, and density functional theory. The findings reveal that the adsorption of CO2 intensifies with increasing pressure and decreasing temperature. Additionally, hydrophilic SiO2 slits exhibit a higher CO2 adsorption capacity compared to hydrophobic SiO2 slits. Moreover, as the width of SiO2 slits increases, both the adsorption and diffusion capabilities of CO2 gradually enhanced. Furthermore, the adsorption energy, adsorption height, and charge transfer were conducted to elucidate the microscopic mechanisms governing CO2 adsorption on SiO2 surfaces with varying wettability. The results provide molecular-level insights into the interaction mechanisms between CO2 molecules and SiO2 nano confinement surfaces with different rock properties. The result contributes valuable theoretical guidance for understanding the adsorption mechanisms of CO2 in caprock formations and its long-term sequestration in geological reservoirs.

  • [1]
    王晓慧, 李雪, 赫文豪, 等. 电荷与应变协同调控g-C9N7膜对CO2吸附和渗透特性的研究[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 18-23. doi: 10.6054/j.jscnun.2022021

    WANG X H, LI X, HE W H, et al. Characteristics of CO2 adsorption and permeability of porous carbon-nitrogen membranes coupling-regulated by charge and strain[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 18-23. doi: 10.6054/j.jscnun.2022021
    [2]
    张凯, 陈掌星, 兰海帆, 等. 碳捕集、利用与封存技术的现状及前景[J]. 特种油气藏, 2023, 30(2): 1-12. doi: 10.3969/j.issn.1006-6535.2023.02.001

    ZHANG K, CHEN Z X, LAN H F, et al. Status and prospects of carbon capture, utilization and storage technology[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 1-12. doi: 10.3969/j.issn.1006-6535.2023.02.001
    [3]
    LIU Z, LI X, HE W, et al. Synergistic effect of charge and strain engineering on porous g-C9N7 nanosheets for highly controllable CO2 capture and separation[J]. Separation and Purification Technology, 2022, 282: 120135/1-10.
    [4]
    LIU Z, ZHAO G, ZHANG X, et al. Superior performance porous carbon nitride nanosheets for helium separation from natural gas: Insights from MD and DFT simulations[J]. Chinese Journal of Chemical Engineering, 2021, 37: 46-53. doi: 10.1016/j.cjche.2021.05.001
    [5]
    LI X, HE W, LIU Z, et al. Highly selective CO2/C2H2 separation with porous g-C9N7 nanosheets by charge and strain engineering[J]. Chemical Engineering Journal, 2022, 435: 134737/1-9.
    [6]
    YANG G, LI Y, ATRENS A, et al. Reactive transport modeling of long-term CO2 sequestration mechanisms at the Shenhua CCS demonstration project, China[J]. Journal of Earth Science, 2017, 28: 457-472. doi: 10.1007/s12583-016-0919-6
    [7]
    谷丽冰, 李治平, 侯秀林. 二氧化碳地质埋存研究进展[J]. 地质科技情报, 2008(4): 80-84. doi: 10.3969/j.issn.1000-7849.2008.04.014

    GU Y B, LI Z P, HOU J L. Existing state about geological storage of carbon dioxide[J]. Geological Science and Technology Information, 2008(4): 80-84. doi: 10.3969/j.issn.1000-7849.2008.04.014
    [8]
    FISCHER S, LIEBSCHER A, WANDREY M, et al. CO2-brine-rock interaction-first results of long-term exposure experiments at in situ P-T conditions of the Ketzin CO2 reservoir[J]. Geochemistry, 2010, 70: 155-164. doi: 10.1016/j.chemer.2010.06.001
    [9]
    KETZER J M, IGLESIAS R, EINLOFT S, et al. Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: experimental and numerical modeling studies of the Rio Bonito Formation (Permian), Southern Brazil[J]. Applied Geochemistry, 2009, 24(5): 760-767. doi: 10.1016/j.apgeochem.2009.01.001
    [10]
    LIU B, QI C, MAI T, et al. Competitive adsorption and diffusion of CH4/CO2 binary mixture within shale organic nanochannels[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 329-336. doi: 10.1016/j.jngse.2018.02.034
    [11]
    CREDOZ A, BILDSTEIN O, JULLIEN M, et al. Experimental and modeling study of geochemical reactivity between clayey caprocks and CO2 in geological storage conditions[J]. Energy Procedia, 2009, 1(1): 3445-3452. doi: 10.1016/j.egypro.2009.02.135
    [12]
    AMBROSE R J, HARTMAN R C, DIAZ-CAMPOS M, et al. New pore-scale considerations for shale gas in place calculations[C]//SPE Unconventional Gas Conference. Pittsburgh: SPE, 2010: 167-183.
    [13]
    TAO L, HUANG J, DASTAN D, et al. New insight into absorption characteristics of CO2 on the surface of calcite, dolomite, and magnesite[J]. Applied Surface Science, 2021, 540: 148320/1-10.
    [14]
    BRODKA A, ZERDA T W. Properties of liquid acetone in silica pores: molecular dynamics simulation[J]. The Journal of Chemical Physics, 1996, 104(16): 6319-6326. doi: 10.1063/1.471292
    [15]
    GUSEV V Y, O'BRIEN J A, SEATON N A. A self-consistent method for characterization of activated carbons using supercritical adsorption and grand canonical Monte Carlo simulations[J]. Langmuir, 1997, 13(10): 2815-2821. doi: 10.1021/la960421n
    [16]
    AKKERMANS R L, SPENLEY N A, ROBERTSON S H. Monte Carlo methods in materials studio[J]. Molecular Simulation, 2013, 39(14/15): 1153-1164.
    [17]
    YOU X, HE M, ZHU X, et al. Influence of surfactant for improving dewatering of brown coal: a comparative experimental and MD simulation study[J]. Separation and Purification Technology, 2019, 210: 473-478. doi: 10.1016/j.seppur.2018.08.020
    [18]
    LIU Z, XUE Q, XING W, et al. Self-assembly of C4H-type hydrogenated graphene[J]. Nanoscale, 2013, 5(22): 11132-11138. doi: 10.1039/c3nr03558a
    [19]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [20]
    MOHAMED S, BARNETT S A, TOCHER D A, et al. Discovery of three polymorphs of 7-fluoroisatin reveals challenges in using computational crystal structure prediction as a complement to experimental screening[J]. CrystEngComm, 2008, 10(4): 399-404.
    [21]
    XU J, YANG C, ZHANG W, et al. Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure[J]. International Journal of Heat and Mass Transfer, 2015, 80: 748-758. doi: 10.1016/j.ijheatmasstransfer.2014.09.066

Catalog

    Article views (114) PDF downloads (36) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return