• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Dian, LI Jun, LIAN Wei, LIU Xianbo, ZHANG Juncheng, GUO Shaokun. CO2 Sequestration Wellbore Sealing and Enhancement Method[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 1-8. DOI: 10.6054/j.jscnun.2024001
Citation: WANG Dian, LI Jun, LIAN Wei, LIU Xianbo, ZHANG Juncheng, GUO Shaokun. CO2 Sequestration Wellbore Sealing and Enhancement Method[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 1-8. DOI: 10.6054/j.jscnun.2024001

CO2 Sequestration Wellbore Sealing and Enhancement Method

More Information
  • Received Date: January 07, 2024
  • Available Online: April 29, 2024
  • Considering the service environment of the CO2 sequestration wellbore, a wellbore model containing a cement corrosion layer was developed. Based on the finite element method, the development process of micro-annulus at the cement plug-formation interface was simulated, the mechanism of micro-annulus expansion and the main controlling factors under the fluid drive were clarified, and the method of wellbore sealing enhancement was proposed. The simulation results show that the supercritical CO2 accumulation will cause a change in the stress at the cement bonding surface. When the stress at the interface changes from compressive to tensile, and the stress value is higher than the bonding strength, micro-annulus will be generated in the wellbore. If the cement stiffness and bonding strength decrease after corrosion, the wellbore sealing decreases; the expansive additive can increase the initial compressive stress of the bonding surface and then enhance the wellbore sealing. When the expansion rate is 0.5‰, the micro-annulus propagation pressure rises by 43.7%, the micro-annulus length decreases by 42.7%, and the wellbore sealing is significantly enhanced.

  • [1]
    IEA. CO2 emissions in 2022[R/OL]. 2023, paris. https://www.iea.org/reports/co2-emissions-in-2022.
    [2]
    WHITE C M, STRAZISAR B R, GRANITE E J, et al. Separation and capture of CO2 from large stationary sources and sequestration in geological formations-Coalbeds and deep saline aquifers[J]. Journal of the Air & Waste Management Association, 2003, 53(6): 645-715.
    [3]
    宋豫秦, 应验. 碳达峰与碳中和背景下蓝碳开发价值、理论与建议探讨[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 93-99. doi: 10.6054/j.jscnun.2022048

    SONG Y Q, YING Y. The value, theory and suggestion concerning blue carbon development against the background of carbon peak and carbon neutrality[J]. Journal of South China Normal University(Natural Science Edition), 2022, 54(3): 93-99. doi: 10.6054/j.jscnun.2022048
    [4]
    BRADSHAW J, BACHU S, BONIJOLY D, et al. CO2 storage capacity estimation: issues and development of standards[J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 62-68. doi: 10.1016/S1750-5836(07)00027-8
    [5]
    BROWN C J, POIENCOT B K, HUDYMA N, et al. An assessment of geologic sequestration potential in the panhandle of Florida USA[J]. Environmental Earth Sciences, 2014, 71(2): 793-806. doi: 10.1007/s12665-013-2481-1
    [6]
    DU S, SU X, XU W. Assessment of CO2 geological storage capacity in the oilfields of the Songliao Basin, northeastern China[J]. Geosciences Journal, 2016, 20(2): 247-257. doi: 10.1007/s12303-015-0037-y
    [7]
    谢健, 魏宁, 吴礼舟, 等. CO2地质封存泄漏研究进展[J]. 岩土力学, 2017, 38(S1): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1026.htm

    XIE J, WEI N, WU L Z, et al. Progress in leakage study of geological CO2 storage[J]. Rock and Soil Mechanics, 2017, 38(S1): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1026.htm
    [8]
    GASDA S E, BACHU S, CELIA M A. Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin[J]. Environmental Geology, 2004, 46(6/7): 707-720.
    [9]
    LOIZZO M, AKEMU O A, JAMMES L, et al. Quantifying the Risk of CO2 Leakage Through Wellbores[J]. SPE Drilling & Completion, 2011, 26(3): 324-331.
    [10]
    HAAGSMA A, WEBER S A, MOODY M A, et al. Comparative wellbore integrity evaluation across a complex of oil and gas fields within the Michigan Basin and implications for CO2 storage[J]. Greenhouse Gases, 2017, 7: 828-842. doi: 10.1002/ghg.1620
    [11]
    PAN L, OLDENBURG C M. Mechanistic modeling of CO2 well leakage in a generic abandoned well through a bridge plug cement-casing gap[J]. International Journal of Greenhouse Gas Control, 2020, 97: 103025/1-14.
    [12]
    NORDBOTTEN J M, CELIA M A, BACHU S, et al. Semianalytical solution for CO2 leakage through an abandoned well[J]. Environmental Science & Technology, 2005, 39(2): 602-611.
    [13]
    WANG W, TALEGHANI A D. Three-dimensional analysis of cement sheath integrity around Wellbores[J]. Journal of Petroleum Science and Engineering, 2014, 121: 38-51. doi: 10.1016/j.petrol.2014.05.024
    [14]
    FENG Y C, LI X R, GRAY K E. Development of a 3D numerical model for quantifying fluid-driven interface debonding of an injector well[J]. International Journal of Greenhouse Gas Control, 2017, 62: 76-90. doi: 10.1016/j.ijggc.2017.04.008
    [15]
    JIANG J W, LI J, LIU G H, et al. Numerical simulation investigation on fracture debonding failure of cement plug/casing interface in abandoned wells[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107226/1-14.
    [16]
    WANG D, LI J, LIAN W, et al. Simulation study of cement plug micro-annulus in milling section of abandoned wells[J]. Geoenergy Science and Engineering, 2023, 224: 211606/1-14.
    [17]
    BRANDVOLL Ø, REGNAULT O, MUNZ I A, et al. Fluid-solid interactions related to subsurface storage of CO2 experimental tests of well cement[J]. Energy Procedia, 2009, 1(1): 3367-3374. doi: 10.1016/j.egypro.2009.02.125
    [18]
    LI Q Y, LIM Y M, FLORES K M, et al. Chemical reactions of portland cement with aqueous CO2 and their impacts on cement's mechanical properties under geologic CO2 sequestration conditions[J]. Environmental Science & Technology, 2015, 46(10): 6335-6343.
    [19]
    ŠAVIJA B, LUKOVIC Ć M. Carbonation of cement paste: understanding, challenges, and opportunities[J]. Construction and Building Materials, 2016, 117: 285-301. doi: 10.1016/j.conbuildmat.2016.04.138
    [20]
    郭辛阳, 吴广军, 步玉环, 等. CO2埋存条件下SO42-对油井水泥石腐蚀的影响[J]. 中国石油大学学报(自然科学版), 2022, 46(4): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202204008.htm

    GUO X Y, WU G J, BU Y H, et al. Effect of sulfate ion on corrosion of oilwell set-cement under CO2 storage[J]. Journal of the China University of Petroleum (Edition of Natural Science), 2022, 46(4): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202204008.htm
    [21]
    ZHANG L, DZOMBAK D A, NAKLES D V, et al. Characterization of pozzolan-amended wellbore cement exposed to CO2 and H2S gas mixtures under geologic carbon storage conditions[J]. International Journal of Greenhouse Gas Control, 2013, 19: 358-368. doi: 10.1016/j.ijggc.2013.09.004
    [22]
    辜涛. 二氧化碳地质封存条件下固井水泥石腐蚀损伤与防护研究[D]. 成都: 西南石油大学, 2017.

    GU T. Study on degradation of oilwell cement and anticorrosion technology under CO2 geological storage conditions[D]. Chengdu: Southwest Petroleum University, 2017.
    [23]
    BARLET-GOUÉDARD V, RIMMELÉ G, GOFFÉ B, et al. Mitigation strategies for the risk of CO2 migration through Wellbores[C]. Proceedings of the IADC/SPE Drilling Conference. Lafayette: SPE, 2006. SPE-98924-MS.
    [24]
    王典, 李军, 刘鹏林, 等. 碳封存区块内弃置井泄露机制及控制方法模拟[J]. 钻井液与完井液, 2023, 40(3): 384-390. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW202303015.htm

    WANG D, LI J, LIU P L, et al. Simulation study of sealing integrity in abandoned wells within CO2 sequestration block[J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 384-390. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW202303015.htm
    [25]
    闫炎, 管志川, 徐申奇, 等. 体积压裂过程中固井界面微环隙扩展的数值模拟[J]. 中国石油大学学报(自然科学版), 2020, 44(3): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202003007.htm

    YAN Y, GUAN Z C, XU S Q, et al. Numerical simulation on micro-annulus propagation of cementing interface during hydraulic fracturing[J]. Journal of the China University of Petroleum (Edition of Natural Science), 2020, 44(3): 66-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202003007.htm
    [26]
    LIU X, NAIR S D, COWAN M, et al. A novel method to evaluate cement-shale bond strength[C]. SPE International Symposium on Oilfield Chemistry. [The Woodlands, Texas, USA]: SPE, 2015. D011S001R005.
    [27]
    OPEDAL N, TODOROVIC J, TORSÆTER M, et al. Experimental study on the cement-formation bonding[C]. SPE International Symposium and Exhibition on Formation Damage Control. Louisiana: SPE, 2014.
    [28]
    CLASS H, EBIGBO A, HELMIG R, et al. A benchmark study on problems related to CO2 storage in geologic formations[J]. Computational Geosciences, 2009, 13(4): 409-434. doi: 10.1007/s10596-009-9146-x
    [29]
    EBIGBO A, CLASS H, HELMIG R. CO2 leakage through an abandoned well: problem-oriented benchmarks[J]. Computational Geosciences, 2007, 11(2): 103-115. doi: 10.1007/s10596-006-9033-7
    [30]
    BUNGER A, KEAR J, LECAMPION B, et al. The geometry of a hydraulic fracture growing along a wellbore annulus[C]. 9th Hstam International Congress on Mechanics. [Limassol, Cyprus]: Proceedings, 2010.
    [31]
    王春雨, 步玉环, 沈忠厚. 油井水泥膨胀性自修复剂机理研究[J]. 钻井液与完井液, 2018, 35(6): 98-102;107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW201806018.htm

    WANG C Y, BU Y H, SHEN Z H. Study on the mechanism of expansive self-healing additives for oil well cement[J]. Drilling Fluid & Completion Fluid, 2018, 35(6): 98-102;107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW201806018.htm
    [32]
    李云杰, 李黔, 徐建军. 固井水泥膨胀剂与增韧剂协同作用与应用分析[J]. 钻井液与完井液, 2021, 38(1): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW202101017.htm

    LI Y J, LI Q, XU J J. Application and analysis of the synergy between oil well cement expanding agents and oil well cement tougheners[J]. Drilling Fluid & Completion Fluid, 2021, 38(1): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW202101017.htm
    [33]
    李鹏, 苗苗, 马晓杰. 膨胀剂对补偿收缩混凝土性能影响的研究进展[J]. 硅酸盐通报, 2016, 35(1): 167-173. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201601030.htm

    LI P, MIAO M, MA X J. Effect of expansive agent on the performance of Shrinkage-compensated concrete[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 167-173. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201601030.htm
    [34]
    连威. 页岩气井套管变形与水泥环失效机理及控制方法研究[D]. 北京: 中国石油大学(北京), 2021.

    LIAN W. Research on the casing deformation and cement sheath failure mechanism and control method in shale gas wells[D]. Beijing: China University of Petroleum, Beijing, 2016.

Catalog

    Article views (213) PDF downloads (65) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return