• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YILIHAMU Yarbaimati, DENG Hao, XIE Lirong. Solar Panel Defect Detection Based on Improved YOLOv4[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 21-30. DOI: 10.6054/j.jscnun.2023059
Citation: YILIHAMU Yarbaimati, DENG Hao, XIE Lirong. Solar Panel Defect Detection Based on Improved YOLOv4[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 21-30. DOI: 10.6054/j.jscnun.2023059

Solar Panel Defect Detection Based on Improved YOLOv4

More Information
  • Received Date: May 12, 2023
  • Available Online: January 21, 2024
  • An improved YOLOv4 detection model is proposed to address the issues of low accuracy, slow detection speed and large model volume in defect detection of solar panels. Firstly, GhostNet is used to replace CSPLocknet-53 in YOLOv4 to achieve model lightweight. Secondly, introducing Depthwise Separable Convolution convolution into the model structure further reduces model parameters and improves model speed. Thirdly, an improved Efficient Channel Attention(ECA) mechanism is introduced into the model to improve detection accuracy. Finally, the S-T-ReLU activation function is used to replace the ReLU activation function in the original YOOv4 to further improve the detection accuracy. The results showed that the improved model had better detection performance. Compared with the original model, the mAP increased by 1.06%, the Floating Point Operation Per Second (FLOPs) decreased by 89.11%, the model volume decreased by 82.61%, the model parameter quantity decreased by 82.77%, and the Frames Per Second (FPS) increased by 35.34%, proving the effectiveness of the proposed algorithm.

  • [1]
    RATHORE N, PANWAR N L, YETTOU F, et al. A comprehensive review of different types of solar photovoltaic cells and their applications[J]. International Journal of Ambient Energy, 2021, 42(10): 1200-1217. doi: 10.1080/01430750.2019.1592774
    [2]
    STROMER D, VETTER A, OEZKAN H C, et al. Enhanced crack segmentation (eCS): a reference algorithm for segmenting cracks in multicrystalline silicon solar cells[J]. IEEE Journal of Photovoltaics, 2019, 9(3): 752-758. doi: 10.1109/JPHOTOV.2019.2895808
    [3]
    高天洋. 基于卷积神经网络的太阳能电池板故障识别[D]. 北京: 华北电力大学(北京), 2021.

    GAO T Y. Solar panel fault recognition based on Convolutional neural network[D]. Beijing: North China Electric Power University (Beijing), 2021.
    [4]
    陈嘉浩, 邢汉发, 陈相龙. 融合级联CRFs和U-Net深度学习模型的遥感影像建筑物自动提取[J]. 华南师范大学学报(自然科学版), 2022, 54(1): 70-78. doi: 10.6054/j.jscnun.2022011

    CHEN J H, XING H F, CHEN X L. Automatic extraction of buildings from remote sensing images using cascaded CRFs and U-Net deep learning models[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 70-78. doi: 10.6054/j.jscnun.2022011
    [5]
    杜云梅, 黄帅, 梁会营. 基于深度卷积神经网络的脑电图异常检测[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 122-128.

    DU Y M, HUANG S, LIANG H Y. Detection of EEG abnormalities based on deep convolutional neural networks[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 122-128.
    [6]
    唐政, 张会林, 马立新. 密集主干网络算法对太阳能电池的缺陷检测[J]. 激光与光电子学进展, 2023, 60(14): 246-252.

    TANG Z, ZHANG H L, MA L X. Dense backbone network algorithms for defect detection of solar cells[J]. Progress in Laser and Optoelectronics, 2023, 60(14): 246-252.
    [7]
    陶志勇, 杜福廷, 任晓奎, 等. 基于T-VGG的太阳电池片缺陷检测[J]. 太阳能学报, 2022, 43(7): 145-151.

    TAO Z Y, DU F T, REN X K, et al Defect detection of solar cells based on T-VGG[J] Journal of Solar Energy, 2022, 43(7): 145-151.
    [8]
    唐小煜, 黄进波, 冯洁文, 等. 基于U-net和YOLOv4的绝缘子图像分割与缺陷检测[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 15-21. doi: 10.6054/j.jscnun.2020088

    TANG X Y, HUANG J B, FENG J W, et al. Insulator image segmentation and defect detection based on U-net and YOLOv4[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 15-21. doi: 10.6054/j.jscnun.2020088
    [9]
    柳进元, 张明锋. 基于YOLOv5算法的图像水深自动提取[J]. 福建师范大学学报(自然科学版), 2023, 39(1): 86-92.

    LIU J Y, ZHANG M F. Automatic image water depth extraction based on YOLOv5 Algorithm[J]. Journal of Fujian Normal University(Natural Science Edition), 2023, 39(1): 86-92.
    [10]
    PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations[J]. Computer vision, graphics, and image processing, 1987, 39(3): 355-363.
    [11]
    HAN K, WANG Y, TIAN Q, et al. Ghostnet: more features from cheap operations[C]//CVF conference on computer vision and pattern recognition. Proceedings of the IEEE, 2020: 1580-1589.
    [12]
    张寅, 朱桂熠, 施天俊, 等. 基于特征融合与注意力的遥感图像小目标检测[J]. 光学学报, 2022, 42(24): 140-150.

    ZHANG Y, ZHU G Y, SHI T J, et al. Remote sensing image small target detection based on feature fusion and attention[J]. Journal of Optics, 2022, 42(24): 140-150.
    [13]
    WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//CVF conference on computer vision and pattern re-cognition. Proceedings of the IEEE, 2020: 11534-11542.
    [14]
    徐沁, 梁玉莲, 王冬越, 等. 基于SE-Res2Net与多尺度空谱融合注意力机制的高光谱图像分类[J]. 计算机辅助设计与图形学学报, 2021, 33(11): 1726-1734.

    XU Q, LIANG Y L, WANG D Y, et al. Hyperspectral image classification based on SE-Res2Net and multi-scale spatial spectral fusion attention mechanism[J]. Journal of Computer Aided Design and Graphics, 2021, 33(11): 1726-1734
    [15]
    LU M, HU Y, LU X. Driver action recognition using deformable and dilated faster R-CNN with optimized region proposals[J]. Applied Intelligence, 2020, 50: 1100-1111.
    [16]
    郝琨, 王阔, 王贝贝. 基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法[J]. 浙江大学学报(工学版), 2022, 56(8): 1622-1632.

    HAO K, WANG K, WANG B B. Lightweight underwater biological detection algorithm based on improved Mobilenet YOLOv3[J]. Journal of Zhejiang University (Engineering Edition), 2022, 56(8): 1622-1632.
    [17]
    杨朋波, 桑基韬, 张彪, 等. 面向图像分类的深度模型可解释性研究综述[J]. 软件学报, 2023, 34(1): 230-254.

    YANG P B, SANG K T, ZHANG B, et al. A review of interpretability research on depth models for image classification[J]. Journal of Software, 2023, 34(1): 230-254.
    [18]
    WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[M]//Computer vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
    [19]
    SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359.

Catalog

    Article views (206) PDF downloads (62) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return