Citation: | SHI Yuyao, ZHANG Yan, HUANG Qiyu, WANG Longze. Carbon Management Model of Distributed Energy System Based on Dynamic Carbon Emission Factors[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 8-20. DOI: 10.6054/j.jscnun.2023058 |
Distributed energy systems offer various advantages, including clean, low-carbon and efficient energy utilization, making them effective in mitigating energy crises and greenhouse gas effects. However, the fluctuating and intermittent nature of most renewable energy sources poses challenges for precise carbon accounting. In order to enhance the spatiotemporal accuracy of existing carbon accounting methods and facilitate systematic carbon emission management, the "carbon perspective" approach is adopted. Initially, The impact of renewable energy variability on the carbon emission intensity of power generators, introducing dynamic carbon emission factors to characterize varying emission intensities across different time intervals. Subsequently, these dynamic factors are integrated into an optimization model, forming a two-stage real-time optimization model for distributed energy systems. Finally, a three-stage carbon management model encompassing carbon forecasting, optimization and accounting, and carbon trading is proposed. Results indicate that higher variability in unit load intensity corresponds to increased accuracy when using dynamic carbon emission factors compared to static ones. The two-stage real-time optimization algorithm during operational scheduling significantly reduces carbon emissions. Implementation of the three-stage carbon management model leads to a substantial decrease in economic and environmental costs, facilitating fine-grained carbon emission management at the micro level and achieving a bottom-up approach to carbon management.
[1] |
李承周, 王宁玲, 窦潇潇, 等. 多能源互补分布式能源系统集成研究综述及展望[J]. 中国电机工程学报, 2023, 43(18): 1-25.
LI C Z, WANG N L, DOU X X, et al. Research review and prospect of multi energy complementary distributed energy system integration[J]. Proceedings of the Chinese Society for Electrical Engineering, 2023, 43 (18): 1-25.
|
[2] |
WANG L Z, JIANG S Y, SHI Y Y, et al. Blockchain-based dynamic energy management mode for distributed energy system with high penetration of renewable energy[J]. International Journal of Electrical Power & Energy Systems, 2023, 148: 108933/1-15.
|
[3] |
李幸芝, 韩蓓, 李国杰, 等. 分布式绿色能源碳交易机制及碳数据管理的挑战[J]. 上海交通大学学报, 2022, 56(8): 977-993.
LI X Z, HAN B, LI G J, et al. The challenge of distributed green energy carbon trading mechanism and carbon data management[J]. Journal of Shanghai Jiaotong University, 2022, 56(8): 977-993.
|
[4] |
刘明达, 蒙吉军, 刘碧寒. 国内外碳排放核算方法研究进展[J]. 热带地理, 2014, 34(2): 248-258.
LIU M D, MENG J J, LIU B H. Research progress on carbon emission accounting methods at home and abroad[J]. Tropical Geography, 2014, 34(2): 248-258.
|
[5] |
LOU Y, YE Y, YANG Y, et al. Long-term carbon emission reduction potential of building retrofits with dynamically changing electricity emission factors[J]. Building Environment, 2022, 210: 108683/1-12.
|
[6] |
葛津铭, 刘志文, 王朝斌, 等. 考虑需求响应的高比例光伏配电网低碳调度[J/OL]. 电网技术, 2023, 1-10. https://doi.org/10.13335/j.1000-3673.pst.2023.0602.
GE J M, LIU Z W, WANG C B, et al. Low carbon dispatch of high proportion photovoltaic distribution networks considering demand response[J/OL]. Power System Technology, 2023, 1-10. https://doi.org/10.13335/j.1000-3673.pst.2023.0602.
|
[7] |
高建强, 宋铜铜, 杨东江. 燃煤发电机组碳排放折算方法研究与应用[J]. 热力发电, 2020, 49(2): 88-92.
GAO J Q, SONG T T, YANG D J. Research and application of carbon emission conversion methods for coal-fired power generation units[J]. Thermal Power Generation, 2020, 49(2): 88-92.
|
[8] |
LI C, WANG L, ZHANG Y, et al. A multi-objective planning method for multi-energy complementary distributed energy system: tackling thermal integration and process synergy[J]. Journal of Cleaner Production, 2023, 390: 135905/1-17.
|
[9] |
魏旭, 刘东, 高飞, 等. 双碳目标下考虑源网荷储协同优化运行的新型电力系统发电规划[J]. 电网技术, 2023, 47(9): 1-13.
WEI X, LIU D, GAO F, et al. A new type of power system generation planning considering coordinated operation of source network load storage under dual carbon goals[J]. Power System Technology, 2023, 47(9): 1-13.
|
[10] |
ZHONG X, ZHONG W, LIU Y, et al. Optimal energy management for multi-energy multi-microgrid networks considering carbon emission limitations[J]. Energy, 2022, 246: 123428/1-13.
|
[11] |
JU L, TAN Z, LI H, et al. Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China[J]. Energy, 2016, 111: 322-340.
|
[12] |
方程, 许彦斌, 张凯琳, 等. 可再生能源消纳责任权重制下风电多阶段消纳策略[J]. 华北电力大学学报(自然科学版), 2023, 50(3): 1-12.
FANG C, XU Y B, ZHANG K L, et al. Multi stage wind power consumption strategy under the responsibility weight system for renewable energy consumption[J]. Journal of North China Electric Power University(Natural Science Edition), 2023, 50(3): 1-12.
|
[13] |
康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的"碳视角": 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833.
KANG C Q, DU E S, LI Y W, et al. "Carbon perspective" of new power systems: scientific issues and research framework[J]. Power System Technology, 2022, 46(3): 821-833.
|
[14] |
DONG Y, ZHAO Y, ZHANG J, et al. Development of a framework of carbon accounting and management on the township level in China[J]. Journal of Environmental Management, 2022, 318: 115609/1-12.
|
[15] |
ASCUI F, LOVELL H. Carbon accounting and the construction of competence[J]. Journal of Cleaner Production, 2012, 36: 48-59.
|
[16] |
李薇, 许轶, 许野, 等. 基于FCI-公平性的电力系统负荷侧碳排放责任分摊研究[J]. 华南师范大学学报(自然科学版), 2023, 55(2): 10-17. doi: 10.6054/j.jscnun.2023014
LI W, XU Y, XU Y, et al. Research on load side carbon emission responsibility sharing in power systems based on FCI fairness[J]. Journal of South China Normal University(Natural Science Edition), 2023, 55(2): 10-17. doi: 10.6054/j.jscnun.2023014
|
[17] |
ANDREW J, CORTESE C. Accounting for climate change and the self-regulation of carbon disclosures[J]. Accounting Forum, 2011, 35(3): 130-138.
|
[18] |
SCHALTEGGER S, LVDEKE-FREUND F, HANSEN E G. Business cases for sustainability: the role of business model innovation for corporate sustainability[J]. International Journal of Innovation Sustainable Development, 2012, 6(2): 95-119.
|
[19] |
殷俊明, 邓倩, 江丽君, 等. 嵌入碳排放的三重预算模型研究[J]. 会计研究, 2020(7): 78-89.
YIN J M, DENG Q, JIANG L J, et al. Research on a Triple Budget Model embedded in carbon emissions[J]. Accounting Research, 2020(7): 78-89.
|
[20] |
REN F, WEI Z, ZHAI X. A review on the integration and optimization of distributed energy systems[J]. Renewable Sustainable Energy Reviews, 2022, 162: 112440/1-27.
|
[21] |
生态环境部. 2021、2022年度全国碳排放权交易配额总量设定与分配实施方案(发电行业)[EB/OL]. 2023. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202303/t20230315_1019707.html.
|
[22] |
王惠. 分布式能源系统多目标优化与敏感性分析[D]: 天津: 天津大学, 2016.
WANG H. Multi objective optimization and sensitivity analysis of distributed energy systems[D]. Tianjin: Tianjin University, 2016.
|
[23] |
朱良君, 张海珍, 王世朋, 等. 基于EBSILON的燃气-蒸汽联合循环系统高冷负荷下供能特性分析[J]. 热力发电, 2021, 50(2): 35-42.
ZHU L J, ZHANG H Z, WANG S P, et al. Analysis of energy supply characteristics of gas steam combined cycle system under high cooling load based on EBSILON[J]. Thermal Power Generation, 2021, 50(2): 35-42.
|
[24] |
曾丹苓. 工程热力学[M]. 北京: 高等教育出版社, 1986.
|
[25] |
ZHOU X, NIU A, LIN C. Optimizing carbon emission forecast for modelling China's 2030 provincial carbon emission quota allocation[J]. Journal of Environmental Management, 2023, 325: 116523/1-16.
|
[26] |
YU X, DONG Z, ZHOU D, et al. Integration of tradable green certificates trading and carbon emissions trading: how will Chinese power industry do?[J]. Journal of Cleaner Production, 2021, 279: 123485/1-12.
|
[27] |
林森, 文书礼, 朱淼, 等. 考虑碳交易机制的海港综合能源系统电-热混合储能优化配置[J]. 上海交通大学学报, 2023. DOI: 10.16183/j.cnki.jsjtu.2022.428.
LIN S, WEN S L, ZHU M, et al. Optimizing the allocation of electric thermal hybrid energy storage in the comprehensive energy system of seaports considering carbon trading mechanisms[J]. Journal of Shanghai Jiaotong University, 2023. DOI: 10.16183/j.cnki.jsjtu.2022.428.
|
[28] |
李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42(8): 2830-2842.
LI Y W, ZHANG N, DU E S, et al. Research on the low-carbon demand response mechanism and benefit analysis of power systems based on carbon emissions[J]. Proceedings of the Chinese Society for Electrical Engineering, 2022, 42(8): 2830-2842.
|
[29] |
张程, 匡宇, 刘佳静, 等. 考虑需求侧管理的风光燃储微网两阶段优化调度[J]. 电力系统保护与控制, 2022, 50(24): 13-22.
ZHANG C, KUANG Y, LIU J J, et al. Two stage optimized scheduling of wind, solar, and fuel storage microgrids considering demand side management[J]. Power System Protection and Control, 2022, 50(24): 13-22.
|