Citation: | CAO Weiqiang, WANG Zhongqiang, ZHANG Guodong, ZHANG Haixia, HOU Ying. Application of High-performance Ni-Cu-S Electrode Material in Supercapacitors[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(4): 28-35. DOI: 10.6054/j.jscnun.2023046 |
[1] |
WANG H, LI J, LI K, et al. Transition metal nitrides for electrochemical energy applications[J]. Chemical Society Reviews, 2021, 50: 1354-1390. doi: 10.1039/D0CS00415D
|
[2] |
陈妹琼, 郭文显, 陈蒙蒙, 等. K2FeO4石墨化生物质多孔炭的制备及其电容性能[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 31-39. doi: 10.6054/j.jscnun.2021055
CHEN M Q, GUO W X, CHEN M M, et al. The preparation and capacitance performance of the K2FeO4-activated biomass porous carbon[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 31-39. doi: 10.6054/j.jscnun.2021055
|
[3] |
赵少飞, 刘鹏, 李婉萍, 等. Ni3S2-多孔镍@泡沫镍电极制备及其赝电容性能[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 28-33. doi: 10.6054/j.jscnun.2020090
ZHAO S F, LIU P, LI W P, et al. Preparation of Ni3S2-Ni@Ni foam electrode and its pseudocapacitance properties[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(6): 28-33. doi: 10.6054/j.jscnun.2020090
|
[4] |
JIA H N, WANG Z Y, ZHENG X H, et al. Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors[J]. Chemical Engineering Journal, 2018, 351: 348-355. doi: 10.1016/j.cej.2018.06.113
|
[5] |
DUBAL D P, GOMEZ-ROMERO P, SANKAPAL B R, et al. Nickel cobaltite as an emerging material for supercapacitors: an overview[J]. Nano Energy, 2015, 11: 377-399. doi: 10.1016/j.nanoen.2014.11.013
|
[6] |
NANDHINI S, MURALIDHARAN G. Graphene encapsulated NiS/Ni3S4 mesoporous nanostructure: a superlative high energy supercapacitor device with excellent cycling performance[J]. Electrochimica Acta, 2021, 365: 1-12.
|
[7] |
HE J P, GUO C, ZHOU S W, et al. Dual carbon-modified nickel sulfide composites toward high-performance electrodes for supercapacitors[J]. Inorganic Chemistry Frontiers, 2019, 6: 226-232. doi: 10.1039/C8QI01024B
|
[8] |
CHEN F, JI S, LIU Q, et al. Rational design of hierarchically core-shell structured Ni3S2@NiMoO4 nanowires for electrochemical energy storage[J]. Small, 2018, 14(27): e1800791/1-8.
|
[9] |
庄强强, 王保峰, 吴宝柱, 等. 高性能长循环锌离子电池双金属氧化物ZnMnO3正极材料[J]. 华南师范大学学报(自然科学版), 2022, 54(1): 30-35. doi: 10.6054/j.jscnun.2022005
ZHUANG Q Q, WAN B F, WU B Z, et al. A bimetallic oxide ZnMnO3 as a high-performance long-cycle cathode for zinc ion batteries[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 30-35. doi: 10.6054/j.jscnun.2022005
|
[10] |
XUN X C, LIU H Y, SU Y C, et al. One-pot synthesis Ni-Cu sulfide on Ni foam with novel three-dimensional prisms/spheres hierarchical structure for high-performance supercapacitors[J]. Journal of Solid State Chemistry, 2019, 275: 95-102. doi: 10.1016/j.jssc.2019.04.012
|
[11] |
LIU H Y, GUO Z X, WANG X B, et al. CuS/MnS composite hexagonal nanosheet clusters: synthesis and enhanced pseudocapacitive properties[J]. Electrochimica Acta, 2018, 271: 425-432. doi: 10.1016/j.electacta.2018.03.048
|
[12] |
LU Q, CHEN J G, XIAO J Q. Nanostructured electrodes for high-performance pseudocapacitors[J]. Angewandte Chemie International Edtion, 2013, 52: 1882-1889. doi: 10.1002/anie.201203201
|
[13] |
赖海, 林颖, 陈希, 等. 纳米SnOx的水热合成及其储锂电化学性能[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 21-28. doi: 10.6054/j.jscnun.2021022
LAI H, LIN Y, CHEN X, et al. Hydrothermal synthesis of nano-SnOx and its electrochemical performance for lithium-ions storage[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 21-28. doi: 10.6054/j.jscnun.2021022
|
[14] |
NADERI L, SHAHROKHIAN S. Nickel vanadium sulfide grown on nickel copper phosphide Dendrites/Cu fibers for fabrication of all-solid-state wire-type micro-supercapacitors[J]. Chemical Engineering Journal, 2020, 392: 124880/1-15.
|
[15] |
CAO M, XUE Z, NIU J, et al. Facile electrodeposition of Ni-Cu-P dendrite nanotube films with enhanced hydrogen evolution reaction activity and durability[J]. ACS Applied Materials & Interfaces, 2018, 10: 35224-35233.
|
[16] |
PARK Y S, CHOI W S, JANG M J, et al. Three-dimensional dendritic Cu-Co-P electrode by one-step electrodeposition on a hydrogen bubble template for hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 10734-10741.
|
[17] |
NADERI L, SHAHROKHIAN S. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances[J]. Journal of Colloid and Interface Science, 2019, 542: 325-338. doi: 10.1016/j.jcis.2019.02.019
|
[18] |
CAO X Y, LIU Y, ZHONG Y X, et al. Flexible coaxial fiber-shaped asymmetric supercapacitors based on manganese, nickel co-substituted cobalt carbonate hydroxides[J]. Journal of Materials Chemistry A, 2020, 8: 1837-1848. doi: 10.1039/C9TA11942F
|
[19] |
CAO X Y, CUI L, LIU B P, et al. Reverse synthesis of star anise-like cobalt doped Cu-MOF/CuO hybrid materials based on a Cu(OH)2 precursor for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2019, 7: 3815-3827. doi: 10.1039/C8TA11396C
|
[20] |
YI T F, QIU L Y, MEI J, et al. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials[J]. Science Bulletin, 2020, 65: 546-556. doi: 10.1016/j.scib.2020.01.011
|
[21] |
GOPI C, VINODH R, SAMBASIVAM S, et al. Co9S8-Ni3S2/CuMn2O4-NiMn2O4 and MnFe2O4-ZnFe2O4/ graphene as binder-free cathode and anode materials for high energy density supercapacitors[J]. Chemical Engineering Journal, 2020, 381: 122640/1-12.
|
[22] |
GUAN B, LI Y, YIN B Y, et al. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor[J]. Chemical Engineering Journal, 2017, 308: 1165-1173. doi: 10.1016/j.cej.2016.10.016
|
[23] |
YUE L, JIA D, TANG J, et al. Improving the rate capability of ultrathin NiCo-LDH nanoflakes and FeOOH nanosheets on surface electrochemically modified graphite fibers for flexible asymmetric supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 560: 237-246. doi: 10.1016/j.jcis.2019.10.032
|
[24] |
SORAM B S, THANGJAM I S, DAI J Y, et al. Flexible transparent supercapacitor with core-shell Cu@Ni@NiCoS nanofibers network electrode[J]. Chemical Engineering Journal, 2020, 395: 125019/1-13.
|
[25] |
CHEN Q, JIN J L, KOU Z K, et al. Cobalt-doping in hierarchical Ni3S2 nanorod arrays enables high areal capacitance[J]. Journal of Materials Chemistry A, 2020, 8: 13114-13120.
|
[26] |
NAGARAJU G, SEKHAR S C, RAMULU B, et al. An integrated approach toward renewable energy storage using rechargeable Ag@Ni0.67Co0.33S-based hybrid supercapa-citors[J]. Small, 2019, 15: e1805418/1-14.
|
[27] |
CHEN H, ZHOU J, LI Q, et al. MOF-assisted construction of a Co9S8@Ni3S2/ZnS microplate array with ultrahigh areal specific capacity for advanced supercapattery[J]. Dalton Transactions, 2020, 49: 10535-10544.
|
[28] |
WANG Y Z, SHI C J, CHEN Y J, et al. Self-supported nickel cobalt carbonate hydroxide nanowires encapsulated cathodically expanded graphite paper for supercapacitor electrodes[J]. Electrochimica Acta, 2020, 363: 1-10.
|
[29] |
WEI Z H, LIU T, ZHANG L Y, et al. Sulfide-based nickel-plated fabrics for foldable quasi-solid-state supercapacitors[J]. Energy & Environmental Materials, 2022: 5(3): 883-891.
|