• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CAO Weiqiang, WANG Zhongqiang, ZHANG Guodong, ZHANG Haixia, HOU Ying. Application of High-performance Ni-Cu-S Electrode Material in Supercapacitors[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(4): 28-35. DOI: 10.6054/j.jscnun.2023046
Citation: CAO Weiqiang, WANG Zhongqiang, ZHANG Guodong, ZHANG Haixia, HOU Ying. Application of High-performance Ni-Cu-S Electrode Material in Supercapacitors[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(4): 28-35. DOI: 10.6054/j.jscnun.2023046

Application of High-performance Ni-Cu-S Electrode Material in Supercapacitors

More Information
  • Received Date: April 15, 2022
  • Available Online: November 09, 2023
  • A three-dimensional flower-like porous Ni-Cu-S electrode material was prepared on copper foil substrate by one-step hydrogen bubble template electrodeposition using copper sulfide with high conductivity as additive component and nickel sulfide with high theoretical specific capacity. This structure increases the specific surface area of the material, increases the active reaction site of the material, thus speeding up the charge transfer and improving the electrochemical performance of the electrode material. In the three-electrode system, the specific capacitance of Ni-Cu-S electrode material can reach 1.57 C/cm2, and the rate performance is 80.2%. Asymmetric supercapacitor was prepared by using Ni-Cu-S electrode material (positive electrode) and activated carbon (AC) (negative electrode). The performance of the asymmetric supercapacitor was tested in two electrode systems. The specific capacitance was 0.91 C/cm2, and the high energy density was 0.89 mWh/cm2 at the power density of 5.32 mW/cm2. After 7 000 charge-discharge cycles, the capacitance remained 89.7% of the initial value, indicating good cycle stability of the material. The result indicates that Ni-Cu-S is an electrode material for high performance supercapacitors.
  • [1]
    WANG H, LI J, LI K, et al. Transition metal nitrides for electrochemical energy applications[J]. Chemical Society Reviews, 2021, 50: 1354-1390. doi: 10.1039/D0CS00415D
    [2]
    陈妹琼, 郭文显, 陈蒙蒙, 等. K2FeO4石墨化生物质多孔炭的制备及其电容性能[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 31-39. doi: 10.6054/j.jscnun.2021055

    CHEN M Q, GUO W X, CHEN M M, et al. The preparation and capacitance performance of the K2FeO4-activated biomass porous carbon[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 31-39. doi: 10.6054/j.jscnun.2021055
    [3]
    赵少飞, 刘鹏, 李婉萍, 等. Ni3S2-多孔镍@泡沫镍电极制备及其赝电容性能[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 28-33. doi: 10.6054/j.jscnun.2020090

    ZHAO S F, LIU P, LI W P, et al. Preparation of Ni3S2-Ni@Ni foam electrode and its pseudocapacitance properties[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(6): 28-33. doi: 10.6054/j.jscnun.2020090
    [4]
    JIA H N, WANG Z Y, ZHENG X H, et al. Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors[J]. Chemical Engineering Journal, 2018, 351: 348-355. doi: 10.1016/j.cej.2018.06.113
    [5]
    DUBAL D P, GOMEZ-ROMERO P, SANKAPAL B R, et al. Nickel cobaltite as an emerging material for supercapacitors: an overview[J]. Nano Energy, 2015, 11: 377-399. doi: 10.1016/j.nanoen.2014.11.013
    [6]
    NANDHINI S, MURALIDHARAN G. Graphene encapsulated NiS/Ni3S4 mesoporous nanostructure: a superlative high energy supercapacitor device with excellent cycling performance[J]. Electrochimica Acta, 2021, 365: 1-12.
    [7]
    HE J P, GUO C, ZHOU S W, et al. Dual carbon-modified nickel sulfide composites toward high-performance electrodes for supercapacitors[J]. Inorganic Chemistry Frontiers, 2019, 6: 226-232. doi: 10.1039/C8QI01024B
    [8]
    CHEN F, JI S, LIU Q, et al. Rational design of hierarchically core-shell structured Ni3S2@NiMoO4 nanowires for electrochemical energy storage[J]. Small, 2018, 14(27): e1800791/1-8.
    [9]
    庄强强, 王保峰, 吴宝柱, 等. 高性能长循环锌离子电池双金属氧化物ZnMnO3正极材料[J]. 华南师范大学学报(自然科学版), 2022, 54(1): 30-35. doi: 10.6054/j.jscnun.2022005

    ZHUANG Q Q, WAN B F, WU B Z, et al. A bimetallic oxide ZnMnO3 as a high-performance long-cycle cathode for zinc ion batteries[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 30-35. doi: 10.6054/j.jscnun.2022005
    [10]
    XUN X C, LIU H Y, SU Y C, et al. One-pot synthesis Ni-Cu sulfide on Ni foam with novel three-dimensional prisms/spheres hierarchical structure for high-performance supercapacitors[J]. Journal of Solid State Chemistry, 2019, 275: 95-102. doi: 10.1016/j.jssc.2019.04.012
    [11]
    LIU H Y, GUO Z X, WANG X B, et al. CuS/MnS composite hexagonal nanosheet clusters: synthesis and enhanced pseudocapacitive properties[J]. Electrochimica Acta, 2018, 271: 425-432. doi: 10.1016/j.electacta.2018.03.048
    [12]
    LU Q, CHEN J G, XIAO J Q. Nanostructured electrodes for high-performance pseudocapacitors[J]. Angewandte Chemie International Edtion, 2013, 52: 1882-1889. doi: 10.1002/anie.201203201
    [13]
    赖海, 林颖, 陈希, 等. 纳米SnOx的水热合成及其储锂电化学性能[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 21-28. doi: 10.6054/j.jscnun.2021022

    LAI H, LIN Y, CHEN X, et al. Hydrothermal synthesis of nano-SnOx and its electrochemical performance for lithium-ions storage[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 21-28. doi: 10.6054/j.jscnun.2021022
    [14]
    NADERI L, SHAHROKHIAN S. Nickel vanadium sulfide grown on nickel copper phosphide Dendrites/Cu fibers for fabrication of all-solid-state wire-type micro-supercapacitors[J]. Chemical Engineering Journal, 2020, 392: 124880/1-15.
    [15]
    CAO M, XUE Z, NIU J, et al. Facile electrodeposition of Ni-Cu-P dendrite nanotube films with enhanced hydrogen evolution reaction activity and durability[J]. ACS Applied Materials & Interfaces, 2018, 10: 35224-35233.
    [16]
    PARK Y S, CHOI W S, JANG M J, et al. Three-dimensional dendritic Cu-Co-P electrode by one-step electrodeposition on a hydrogen bubble template for hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 10734-10741.
    [17]
    NADERI L, SHAHROKHIAN S. Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances[J]. Journal of Colloid and Interface Science, 2019, 542: 325-338. doi: 10.1016/j.jcis.2019.02.019
    [18]
    CAO X Y, LIU Y, ZHONG Y X, et al. Flexible coaxial fiber-shaped asymmetric supercapacitors based on manganese, nickel co-substituted cobalt carbonate hydroxides[J]. Journal of Materials Chemistry A, 2020, 8: 1837-1848. doi: 10.1039/C9TA11942F
    [19]
    CAO X Y, CUI L, LIU B P, et al. Reverse synthesis of star anise-like cobalt doped Cu-MOF/CuO hybrid materials based on a Cu(OH)2 precursor for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2019, 7: 3815-3827. doi: 10.1039/C8TA11396C
    [20]
    YI T F, QIU L Y, MEI J, et al. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials[J]. Science Bulletin, 2020, 65: 546-556. doi: 10.1016/j.scib.2020.01.011
    [21]
    GOPI C, VINODH R, SAMBASIVAM S, et al. Co9S8-Ni3S2/CuMn2O4-NiMn2O4 and MnFe2O4-ZnFe2O4/ graphene as binder-free cathode and anode materials for high energy density supercapacitors[J]. Chemical Engineering Journal, 2020, 381: 122640/1-12.
    [22]
    GUAN B, LI Y, YIN B Y, et al. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor[J]. Chemical Engineering Journal, 2017, 308: 1165-1173. doi: 10.1016/j.cej.2016.10.016
    [23]
    YUE L, JIA D, TANG J, et al. Improving the rate capability of ultrathin NiCo-LDH nanoflakes and FeOOH nanosheets on surface electrochemically modified graphite fibers for flexible asymmetric supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 560: 237-246. doi: 10.1016/j.jcis.2019.10.032
    [24]
    SORAM B S, THANGJAM I S, DAI J Y, et al. Flexible transparent supercapacitor with core-shell Cu@Ni@NiCoS nanofibers network electrode[J]. Chemical Engineering Journal, 2020, 395: 125019/1-13.
    [25]
    CHEN Q, JIN J L, KOU Z K, et al. Cobalt-doping in hierarchical Ni3S2 nanorod arrays enables high areal capacitance[J]. Journal of Materials Chemistry A, 2020, 8: 13114-13120.
    [26]
    NAGARAJU G, SEKHAR S C, RAMULU B, et al. An integrated approach toward renewable energy storage using rechargeable Ag@Ni0.67Co0.33S-based hybrid supercapa-citors[J]. Small, 2019, 15: e1805418/1-14.
    [27]
    CHEN H, ZHOU J, LI Q, et al. MOF-assisted construction of a Co9S8@Ni3S2/ZnS microplate array with ultrahigh areal specific capacity for advanced supercapattery[J]. Dalton Transactions, 2020, 49: 10535-10544.
    [28]
    WANG Y Z, SHI C J, CHEN Y J, et al. Self-supported nickel cobalt carbonate hydroxide nanowires encapsulated cathodically expanded graphite paper for supercapacitor electrodes[J]. Electrochimica Acta, 2020, 363: 1-10.
    [29]
    WEI Z H, LIU T, ZHANG L Y, et al. Sulfide-based nickel-plated fabrics for foldable quasi-solid-state supercapacitors[J]. Energy & Environmental Materials, 2022: 5(3): 883-891.

Catalog

    Article views (134) PDF downloads (87) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return