Processing math: 0%
  • Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Yaru, XIA Li. Existence of Weak Solutions for Some Singular Parabolic Equations with Gradient Terms[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 96-102. DOI: 10.6054/j.jscnun.2023040
Citation: ZHANG Yaru, XIA Li. Existence of Weak Solutions for Some Singular Parabolic Equations with Gradient Terms[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 96-102. DOI: 10.6054/j.jscnun.2023040

Existence of Weak Solutions for Some Singular Parabolic Equations with Gradient Terms

More Information
  • Received Date: February 12, 2021
  • Available Online: August 25, 2023
  • A class of singular parabolic equations with gradient terms is studied in this paper, with Dirichlet boun-dary condition and initial condition, of the from {ytyκry+λ|y|2ym=f(r,t)(y where T>0, κ≥0, λ>0, m∈(0, 2). Since singular parabolic equations containing gradient terms have singular terms and nonlinear terms, the parabolic regularization method is used to regularize the equation, and then combined with the sub-super solutions method, the existence of weak solutions of the equations under different assumptions is proved. Finally, the weak comparison principle of the equations is proved.
  • [1]
    PEDRO J M, PETITTA F. Parabolic equations with nonli-near singularities[J]. Nonlinear Analysis, 2011, 74(1): 114-131. doi: 10.1016/j.na.2010.08.023
    [2]
    XIA L, YAO Z A. Existence, uniqueness and asymptotic behavior of solutions for a singular parabolic equation[J]. Journal of Mathematical Analysis and Applications, 2009, 358(1): 182-188. doi: 10.1016/j.jmaa.2009.04.039
    [3]
    运东方, 黄淑祥. 一类奇异项依赖于梯度的奇异偏微分方程的研究[J]. 数学物理学报, 2012, 32A(5): 861-878. doi: 10.3969/j.issn.1003-3998.2012.05.005

    YUN D F, HUANG S X. On a class of singular equations with nonlinear terms depending on the gradient[J]. Acta Mathematica Scientia, 2012, 32A(5): 861-878. doi: 10.3969/j.issn.1003-3998.2012.05.005
    [4]
    ARCOYA D, CARMONA J, LEONORI T, et al. Existence and nonexistence of solutions for singular quadratic quasilinear equations[J]. Journal of Differential Equations, 2009, 246(10): 4006-4042. doi: 10.1016/j.jde.2009.01.016
    [5]
    CARMONA J, PEDRO J M, SUAERZ A. Existence and non-existence of positive solutions for nonlinear elliptic singular equations with natural growth[J]. Nonlinear Analysis, 2013, 89: 157-169. doi: 10.1016/j.na.2013.05.015
    [6]
    OLIVA F, PETITTA F. On singular elliptic equations with measure sources[J]. ESAIM: Control, Optimization and Calculus of Variations, 2016, 22(1): 289-308. doi: 10.1051/cocv/2015004
    [7]
    OLIVA F, PETITTA F. Finite and infinite energy solutions of singular elliptic problems: existence and uniqueness[J]. Journal of Differential Equations, 2018, 264(1): 311-340. doi: 10.1016/j.jde.2017.09.008
    [8]
    SUN Y J, ZHANG D Z. The role of the power 3 for elliptic equations with negative exponents[J]. Calculus of Variations and Partial Differential Equations, 2014, 49(3/4): 909-922.
    [9]
    CANINO A, SCIUNZI B, TROMBETTA A. Existence and uniqueness for p-Laplace equations involving singular nonlinearities[J]. Nonlinear Differential Equations and Applications, 2016, 23(2): 1-18.
    [10]
    DALLAGLIO A, ORSINA L, PETITTA F. Existence of solutions for degenerate parabolic equations with singular terms[J]. Nonlinear Analysis, 2016, 131: 273-288. doi: 10.1016/j.na.2015.06.030
    [11]
    OLIVA F, PETITTA F. A nonlinear parabolic problem with singular terms and nonregular data[J]. Nonlinear Analysis, 2020, 194: 111472/1-13.
    [12]
    MAGLIOCCA M, OLIVA F. On some parabolic equations involving superlinear singular gradient terms[J]. Journal of Evolution Equations, 2021, 21(2): 2547-2590. doi: 10.1007/s00028-021-00695-1
    [13]
    ZHOU W S, LEI P D. A one-dimensional nonlinear heat equation with a singular term[J]. Journal of Mathematical Analysis and Applications, 2010, 368(2): 711-726. doi: 10.1016/j.jmaa.2010.03.066
    [14]
    ZHOU W S. Positive solutions for a singular second order boundary value problem[J]. Applied Mathematics E-Notes, 2009, 9: 154-159.
    [15]
    夏莉, 李敬娜. 带梯度项的奇异抛物方程古典解的研究[J]. 暨南大学学报(自然科学与医学版), 2014, 35(6): 564-568. https://www.cnki.com.cn/Article/CJFDTOTAL-JNDX201406013.htm

    XIA L, LI J N. Classical solutions for some singular parabolic equations with gradient term[J]. Journal of Jinan University(Natural Science & Medicine Edition), 2014, 35(6): 564-568. https://www.cnki.com.cn/Article/CJFDTOTAL-JNDX201406013.htm
    [16]
    XIA L, ZHANG Y Y. Nonnegative classical solutions for some singular parabolic equation[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2015, 30: 124-128.
    [17]
    LADYZENSKAJA O A, SOLONNIKOV V A, URALC'EVA N N. Linear and quasi-linear equations of parabolic type[M]. Providence, Rhode Island: American Mathematical Society, 1988.
    [18]
    XIA L, LI J N, LIU Q. Existence of weak solutions for some singular parabolic equation[J]. Acta Mathematica Scientia, 2016, 36(6): 1651-1661. doi: 10.1016/S0252-9602(16)30097-2

Catalog

    Article views (68) PDF downloads (29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return