• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Yanlin, FAN Yanping, GAO Xin, NIU Jing. The Research on the Degradation of Spiramycin by Cerium-doped Silver Phosphate/Porphyrin Composite Photocatalyst[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 64-73. DOI: 10.6054/j.jscnun.2023037
Citation: ZHANG Yanlin, FAN Yanping, GAO Xin, NIU Jing. The Research on the Degradation of Spiramycin by Cerium-doped Silver Phosphate/Porphyrin Composite Photocatalyst[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 64-73. DOI: 10.6054/j.jscnun.2023037

The Research on the Degradation of Spiramycin by Cerium-doped Silver Phosphate/Porphyrin Composite Photocatalyst

More Information
  • Received Date: January 19, 2022
  • Available Online: August 25, 2023
  • A Ce-Ag3PO4/TCPP heterojunction composite catalyst was constructed by combining with 5, 10, 15, 20-tetra (4-carboxylphenyl) porphyrin (TCPP) to investigate its catalytic degradation performance for Spiramycin (SPM). Using SEM, XRD, XPS, UV-Vis DRS and FTIR methods to characterize and analyze the microchemical structure, chemical composition and photochemical properties of the catalysts and further clarify the reaction mechanism of SPM photocatalytic degradation. The Ce-Ag3PO4/TCPP photocatalyst has a degradation ratio of 87.7% for SPM under visible light irradiation for 6 h, and the degradation rate constant is 5.8 times that of pure Ag3PO4. Photoelectrochemical measurements (photocurrent response, electrochemical impedance), ESR test, radical trapping, and PL spectral analysis results show that the doping of cerium ions (Ce3+) can effectively increase the specific surface area of the catalyst and reduce the recombination of electron-hole pairs; the introduction of TCPP can accelerate electron transfer and enhance light absorption performance, thereby enhancing the photocatalytic activity. This doped composite catalyst provides a simple and efficient route for efficient photodegradation of SPM.
  • [1]
    常海莎, 闫豫君, 鲁建江, 等. 螺旋霉素在水溶液中的光降解[J]. 环境化学, 2018, 37(6): 1343-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201806019.htm

    CHANG H S, YAN Y J, LU J J, et al. Photodegradation of spiramycin in aqueous solution[J]. Environmental Chemistry, 2018, 37(6): 1343-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201806019.htm
    [2]
    魏晓东, 刘叶新, 周志洪, 等. 广州典型排放源废水中抗生素的污染特征和去除效果[J]. 华南师范大学学报(自然科学版), 2018, 50(1): 11-20. doi: 10.6054/j.jscnun.2018010

    WEI X D, LIU Y X, ZHOU Z H, et al. Occurrence and removal of antibiotics from wastewater of typical emission sources in Guangzhou, China[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(1): 11-20. doi: 10.6054/j.jscnun.2018010
    [3]
    ZHANG L W, ZHU Y F. A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts[J]. Catalysis Science & Technology, 2012, 2(4): 694-706.
    [4]
    BI Y P, OUYANG S X, UMEZAWA N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. Journal of the American Chemical Society, 2011, 133(17): 6490-6492. doi: 10.1021/ja2002132
    [5]
    YI Z G, YE J H, KIKUGAWA N K, et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nature Materials, 2010, 9(7): 559-564. doi: 10.1038/nmat2780
    [6]
    刘一鸣, 张曦, 陈芳艳, 等. Ag3PO4/Bi2O3异质结光催化剂的制备及其光催化性能研究[J]. 江苏科技大学学报(自然科学版), 2019, 33(5): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HDCB201905014.htm

    LIU Y M, ZHANG X, CHEN F Y, et al. Preparation and photocatalytic activity of heterojunction-structured photocatalysts Ag3PO4/Bi2O3[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2019, 33(5): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HDCB201905014.htm
    [7]
    郭玉玮, 刘旭东, 赵建军, 等. 原位化学沉积法制备AgBr/Ag3PO4光催化剂及其催化性能[J]. 石油学报(石油加工), 2020, 36(3): 484-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG202003008.htm

    GUO Y W, LIU X D, ZHAO J J, et al. Preparation of AgBr/Ag3PO4 composite photocatalyst by in-situ chemical deposition and its photocatalytic performance[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 484-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG202003008.htm
    [8]
    TUDISCO C, PULVIRENTI L, COOL P, et al. Porphyrin functionalized bismuth ferrite for enhanced solar light photocatalysis[J]. Dalton Transactions, 2020, 49(25): 8652-8660. doi: 10.1039/C9DT04514G
    [9]
    HUANG Y, ZHAO P, MIAO H C, et al. Organic-inorganic TCPP/BiOCl hybrids with accelerated interfacial charge separation for boosted photocatalytic performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616: 126367/1-12.
    [10]
    MARZIEH Y B, BAHRAM B, SOLMAZ Z. Synthesis, characterization, and design of a photocatalyst based on BiOBr nanoplates and tin porphyrin with enhanced visible light photocatalytic activity[J]. Research on Chemical Intermediates, 2020, 46(1): 197-213. doi: 10.1007/s11164-019-03943-9
    [11]
    袁潮苇. La掺杂光催化剂的制备及净化空气中NO的反应机理研究[D]. 重庆: 重庆工商大学, 2021.

    YUAN C W. Investigation ofphotocatalytic no oxidation and reaction mechanism via La doping in photocatalyst[D]. Chongqing: Chongqing Technology and Business University, 2021.
    [12]
    ZHANG Y, SUN A, SUONAN Z, et al. Effect of rare-earth (Sm, Ce, and La) ions doping on the lattice structure and magnetic properties of Zn-Ba-Co ferrites by sol-gel auto-combustion method[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(12): 16505-16518. doi: 10.1007/s10854-021-06207-8
    [13]
    GUO Q, LI H, ZHANG Q, et al. Fabrication, characterization and mechanism of a novel Z-scheme Ag3PO4/NG/Polyimide composite photocatalyst for microcystin-LR degradation[J]. Applied Catalysis B: Environmental, 2018, 229: 192-203. doi: 10.1016/j.apcatb.2018.02.023
    [14]
    XU H, WANG C, SONG Y, et al. CNT/Ag3PO4 composites with highly enhanced visible light photocatalytic activity and stability[J]. Chemical Engineering Journal, 2014, 241(4): 35-42.
    [15]
    BORJIGIN B, DING L, LI H Q, et al. A solar light-induced photo-thermal catalytic decontamination of gaseous benzene by using Ag/Ag3PO4/CeO2 heterojunction[J]. Chemical Engineering Journal, 2020, 402: 126070/1-14.
    [16]
    GAO H Y, WANG J Y, JIA M Y, et al. Construction of TiO2 nanosheets/tetra (4-carboxyphenyl) porphyrin hybrids for efficient visible-light photoreduction of CO2[J]. Chemical Engineering Journal, 2019, 34: 684-693.
    [17]
    李德芝. 金属卟啉框架、铜/碳材料的合成及性质研究[D]. 大连: 大连理工大学, 2020.

    LI D Z. Synthesis of metal-porphyrin framework and Cu/C composites for their photothermal and electrocatalytic properties[D]. Dalian: Dalian University of Technology, 2020.
    [18]
    KOBAYASHI T, KUROKAWA F, UYEDA N. The metal-ligand vibrations in the infrared spectra of various metal phthalocyanines[J]. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 1970, 26(6): 1305-1311. doi: 10.1016/0584-8539(70)80036-8
    [19]
    曾锦萍, 袁晓玲, 邓记华. 若干5, 10, 15, 20-四(4-羧基苯基)卟啉金属配合物的合成与表征[J]. 宜春学院学报, 2010, 32(4): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YCSB201004005.htm

    ZENG J P, YUAN X L, DENG J H. Synthesis and characterization of some metallic(Ⅱ) complexes with 5, 10, 15, 20-tetra (4-carboxyphenyl) porphyrin ligand[J]. Journal of Yichun College, 2010, 32(4): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YCSB201004005.htm
    [20]
    LIN P Y, SHEN J, PRASAD C, et al. The synergetic effect of carbon nanotubes and MoS2 as co-catalysts for enhancing the photocatalytic oxygen evolution of Ag3PO4[J]. Ceramics International, 2019, 45(17): 21120-21126. doi: 10.1016/j.ceramint.2019.07.088
    [21]
    李向源. 基于5, 10, 15, 20-四(4-羧基苯基)卟啉桥联配体的纳米MOFs的合成及性能研究[D]. 济南: 山东师范大学, 2018.

    LI X Y. Synthesis and properties of nano MOFs based on 5, 10, 15, 20-tetra (4-carboxyphenyl) porphyrin bridging ligand[D]. Jianan: Shandong Normal University, 2018.
    [22]
    梅光泉, 袁晓玲, 曾锦萍. 5, 10, 15, 20-四(4-羧基苯基)卟啉及其钯(Ⅱ)配合物的合成与表征[J]. 化学试剂, 2008, 11: 809-812;815. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201104005.htm

    MEI G Q, YUAN X L, ZENG J P. Study on simultaneous determination of pyrocatechol, resorcinol and hydroquinone by supporting vector regression robust modeling[J]. Chemical Reagents, 2008, 11: 809-812;815. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201104005.htm
    [23]
    曾锦萍, 梅光泉, 刘万云, 等. 5, 10, 15, 20-四(4-羧基苯基)卟啉铂(Ⅱ)配合物的合成与热谱研究[J]. 宜春学院学报, 2009, 31(2): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-YCSB201004006.htm

    ZENG J P, MEI G Q, LIU W Y. Study on synthesis and thermograms of platinum (Ⅱ) complex with 5, 10, 15, 20-tetra (4-carboxyphenyl) porphyrin ligand[J]. Journal of Yichun College, 2009, 31(2): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-YCSB201004006.htm
    [24]
    CHEN L, MA W, DAI J D, et al. Facile synthesis of highly efficient graphitic-C3N4/ZnFe2O4 heterostructures enhanced visible-light photocatalysis for spiramycin degradation[J]. Journal of Photochemistry and Photobiology A-Chemistry, 2016, 328: 24-32. doi: 10.1016/j.jphotochem.2016.04.026
    [25]
    CHICHE D, SCHWEITZER J M. Investigation of competitive COS and HCN hydrolysis reactions upon an industrial catalyst: Langmuir-Hinshelwood kinetics modeling[J]. Applied Catalysis B: Environmental, 2017, 205: 189-200. doi: 10.1016/j.apcatb.2016.12.002
    [26]
    CHEN S F, LEI J, TANG W M, et al. Fabrication, characterization and mechanism of a novel Z-scheme photocatalyst NaNbO3/WO3 with enhanced photocatalytic activity[J]. Dalton Transactions, 2013, 42(30): 10759-10768. doi: 10.1039/c3dt50699a
    [27]
    GUO X Y, LI X Q, QIN L X, et al. A highly active nano-micro hybrid derived from Cu-bridged TiO2/porphyrin for enhanced photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental, 2019, 243: 1-9. doi: 10.1016/j.apcatb.2018.10.030
    [28]
    CHEN C, MA W, ZHAO J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chemical Society Reviews, 2010, 39: 4206-4219. doi: 10.1039/b921692h
    [29]
    XU D F, CHENG B, CAO S W, et al. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation[J]. Applied Catalysis B: Environmental, 2015, 164(5): 380-388.
    [30]
    CHEN F, YANG Q, LI X M, et al. Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation[J]. Applied Catalysis B: Environmental, 2017, 200: 330-334.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return