• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHONG Chengtung, TANG Youning, NG Johan. Exergy Analysis based on CO2 Capture and Selective Exhaust Gas Recirculation in a Natural Gas Combined Cycle Power Plant[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 1-8. DOI: 10.6054/j.jscnun.2023029
Citation: CHONG Chengtung, TANG Youning, NG Johan. Exergy Analysis based on CO2 Capture and Selective Exhaust Gas Recirculation in a Natural Gas Combined Cycle Power Plant[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 1-8. DOI: 10.6054/j.jscnun.2023029

Exergy Analysis based on CO2 Capture and Selective Exhaust Gas Recirculation in a Natural Gas Combined Cycle Power Plant

More Information
  • Received Date: May 03, 2022
  • Available Online: August 25, 2023
  • A novel integrated combined cycle with post-combustion carbon capture system is proposed to capture and recycle CO2 through the integration of selective exhaust gas recirculation (S-EGR) for higher system operating efficiency. Based on the operating data of an actual combined cycle power plant, the study explores the impact of S-EGR integration on combined cycle and carbon capture system. Results show that: After S-EGR integration, the exergetic efficiencies of carbon capture and combined cycle are improved by 6.9% and 1.3%, respectively; The combustion chamber is the part with the largest Exergy destruction in the combined cycle, accounting for 44.8%, followed by the steam turbine, condenser and heat recovery steam generator (HRSG), the main reason for the Exergy destruction is the temperature difference; After post-combustion carbon capture system is integrated with the combined cycle, the thermal and exergetic efficiency both reach the peak when the S-EGR recycle rate (SRR) is 10%, and then gradually decrease.
  • [1]
    全球碳捕集与封存研究院. 全球碳捕集与封存现状2021[R]. (2021-09-02)[2022-05-04] 2021. https://cn.globalccsinstitute.com/resources/publications-reports-research/global-status-report-registration.
    [2]
    田慧芳. 中国实现碳中和承诺的挑战与机遇[J]. 旗帜, 2021(6): 53-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIGU202106022.htm

    TIAN H F. Challenges and opportunities for China to realize its carbon neutrality commitment[J]. Flag, 2021(6): 53-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZIGU202106022.htm
    [3]
    中共中央国务院. 关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. (2021-10-24)[2022-05-04]. http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm.
    [4]
    亚洲开发银行. 中国碳捕集和封存示范与推广路线图研究[R]. (2015-11-01)[2022-05-04]. https://www.adb.org/sites/default/files/publication/175347/roa-dmap-ccs-prc-zh_0.pdf.
    [5]
    JIANG K. ASHWORTH P. The development of Carbon Capture Utilization and Storage (CCUS) research in China: a bibliometric perspective[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 11052/1-16. doi: 10.1016/j.rser.2020.110521
    [6]
    ZHU X C, GE T S, WU J Y, et al. Large-scale applications and challenges of adsorption-based carbon capture technologies[J]. Chinese Science Bulletin, 2021, 66(22): 2861-2877. doi: 10.1360/TB-2021-0017
    [7]
    陈健, 孙世超, 李铭迪, 等. 钙铜复合吸收剂CO2捕集性能优化研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 43-52. doi: 10.6054/j.jscnun.2022043

    HEN J, SUN S C, LI M D, et al. The progress in the research on optimizing CO2 capture performance of CaO/CuO composites[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 43-52. doi: 10.6054/j.jscnun.2022043
    [8]
    鲍永武. 锅炉排烟温度高的危害及其治理[J]. 世界有色金属, 2018(11): 263-264. doi: 10.3969/j.issn.1002-5065.2018.11.150

    BAO Y W. Harm and treatment of high exhaust gas temperature of boiler[J]. World Nonferrous Metals, 2018(11): 263-264. doi: 10.3969/j.issn.1002-5065.2018.11.150
    [9]
    BILIYOK C, YEUNG H. Evaluation of natural gas combined cycle power plant for post-combustion CO2 capture integration[J]. International Journal of Greenhouse Gas Control, 2013, 19: 396-405. doi: 10.1016/j.ijggc.2013.10.003
    [10]
    LI H, DITARANTO M, BERSTAD D. Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture[J]. Energy, 2011, 36(2): 1124-1133. doi: 10.1016/j.energy.2010.11.037
    [11]
    ELKADY A M, EVULET A B, ANTHONY B, et al. Application of exhaust gas recirculation in a DLN F-class combustion system for post-combustion CO2 capture[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(3): 034505/1-6. doi: 10.1115/1.2982158
    [12]
    李晗, 陈健. 单乙醇胺吸收CO2的热力学模型和过程模拟[J]. 化工学报, 2014, 65(1): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201401010.htm

    LI H, CHEN J. Thermodynamic model and process simulation of CO2 absorption by monoethanolamine[J]. Journal of Chemical Industry, 2014, 65(1): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201401010.htm
    [13]
    BELLAS J M, FINNEY K N, DIEGO M E, et al. Experimental investigation of the impacts of selective exhaust gas recirculation on a micro gas turbine[J]. International Journal of Greenhouse Gas Control, 2019, 90: 102809/1-11. doi: 10.1016/j.ijggc.2019.102809
    [14]
    BEJAN A, G TSATSARONIS M M. Thermal design and optimization[M]. Manhattan: A Wiley Interscience Publication, 1996: 558.
    [15]
    HERRAIZ L, FERNANDEZ E S, PALFI E, et al. Selective exhaust gas recirculation in combined cycle gas turbine power plants with post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2018, 71: 303-321. doi: 10.1016/j.ijggc.2018.01.017
    [16]
    MERKEL T C, WEI X T, HE Z J, et al. Selective exhaust gas recycle with membranes for CO2 capture from natural gas combined cycle power plants[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1150-1159.
    [17]
    ALEJANDRO A M, PAPAYANOPOULOS E M, MILLARES C R. Diagnosis and redesign of power plants using combined Pinch and Exergy analysis[J]. Energy, 2014, 72: 643-651. doi: 10.1016/j.energy.2014.05.090
    [18]
    周旭健, 李清毅, 陈瑶姬, 等. 化学吸收法在燃后区CO2捕集分离中的研究和应用[J]. 能源工程, 2019, 3: 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGC201903010.htm

    ZHOU X J, LI Q Y, CHEN Y J, et al. Research and application of chemical absorption method in CO2 capture and separation in post-combustion zone[J]. Energy Engineering, 2019, 3: 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGC201903010.htm
    [19]
    GHARAGHEIZI F, KASHKOULI P I, HEDDEN R C. Standard molar chemical exergy: a new accurate model[J]. Energy, 2018, 158: 924-935.
    [20]
    HE Y C, HOU Y, ZHAO H L, et al. Comparison of irreversible losses of three expansion devices[J]. Cryogenics and Super Conductivity, 2005, 33(2): 54-57.

Catalog

    Article views (306) PDF downloads (237) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return