Citation: | TANG Xiaoyu, WANG Dong, LIN Yixin, LI Ping. Facial Expression Recognition Based on Improved Octave Convolution Algorithm[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 116-123. DOI: 10.6054/j.jscnun.2023027 |
[1] |
SHAN C F, GONG S G, MCOWAN P W. Facial expression recognition based on Local Binary Patterns: a comprehensive study[J]. Image and Vision Computing, 2009, 27(6): 803-816. doi: 10.1016/j.imavis.2008.08.005
|
[2] |
MAHMUD F, ISLAM B, HOSSAIN A, et al. Facial region segmentation based emotion recognition using K-Nearest Neighbors[C]//Proceedings of 2018 International Confe-rence on Innovation in Engineering and Technology. Dhaka: IEEE, 2018: 1-5.
|
[3] |
ZHI R C, FLIERL M, RUAN Q Q, et al. Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition[J]. IEEE Transaction on Systems, Man, and Cybernetics: Part B, 2011, 41(1): 38-52. doi: 10.1109/TSMCB.2010.2044788
|
[4] |
ZHANG Z Y, MU X M, GAO L. Recognizing facial expressions based on Gabor filter selection[C]//Procee dings of International Congress on Image and Signal Processing. Shanghai: IEEE, 2011: 1544-1548.
|
[5] |
胡敏, 滕文娣, 王晓华, 等. 融合局部纹理和形状特征的人脸表情识别[J]. 电子与信息学报, 2018, 40(6): 1338-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201806010.htm
HU M, TENG W D, WANG X H, et al. Facial expression recognition based on local texture and shape features[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1338-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201806010.htm
|
[6] |
MATSUGU M, MORI K, MITARI Y, et al. Subject independent facial expression recognition with robust face detection using a convolutional neural network[J]. Neural Networks, 2003, 16(5/6): 555-559.
|
[7] |
SUN B, LI L, ZHOU G, et al. Facial expression recognition in the wild based on multimodal texture features[J]. Journal of Electronic Imaging, 2016, 25(6): 061407/1-8.
|
[8] |
HUANG C. Combining convolutional neural networks for emotion recognition[C]//Proceedings of 2017 IEEE MIT Undergraduate Research Technology Conference. Cambridge: IEEE, 2017: 1-4.
|
[9] |
冯杨, 刘蓉, 鲁甜. 基于小尺度核卷积的人脸表情识别[J]. 计算机工程, 2021, 47(4): 262-267. doi: 10.19678/j.issn.1000-3428.0056775
FENG Y, LIU R, LU T. Facial expression recognition based on small-scale kernel convolution[J]. Computer Engineering, 2021, 47(4): 262-267. doi: 10.19678/j.issn.1000-3428.0056775
|
[10] |
GEORGESCU M I, IONESCU R T, POPESCU M. Local learning with deep and handcrafted features for facial expression recognition[J]. IEEE Access, 2019, 7: 64827-64836. doi: 10.1109/ACCESS.2019.2917266
|
[11] |
WANG K, PENG X, YANG J, et al. Suppressing uncertainties for large-scale facial expression recognition[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6897-6906.
|
[12] |
LI H, WANG N, DING X, et al. Adaptively learning facial expression representation via C-F labels and distillation[J]. IEEE Transactions on Image Processing, 2021, 30: 2016-2028. doi: 10.1109/TIP.2021.3049955
|
[13] |
崔子越, 皮家甜, 陈勇, 等. 结合改进VGGNet和Focal Loss的人脸表情识别[J]. 计算机工程与应用, 2021, 57(19): 171-178. doi: 10.3778/j.issn.1002-8331.2007-0492
CUI Z Y, PI J T, CHEN Y, et al. Facial expression recognition combined with improved VGGNet and Focal Loss[J]. Computer Engineering and Applications, 2021, 57(19): 171-178. doi: 10.3778/j.issn.1002-8331.2007-0492
|
[14] |
XUE F, WANG Q, GUO G. TransFER: learning relation-aware facial expression representations with transformers[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 3581-3590.
|
[15] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
|
[16] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv, (2015-04-10)[2021-12-16]. https://arxiv.org/abs/1409.1556.
|
[17] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
[18] |
CHEN Y, FAN H, XU B, et al. Drop an Octave: reducing spatial redundancy in convolutional neural networks with Octave Convolution[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 3434-3443.
|
[19] |
MALLAT S G. A wavelet tour of signal processing[M]. New York: Academic Press, 1999.
|
[20] |
NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines Vinod Nair[C]//Procee-dings of the 27th International Conference on Machine Learning (ICML-10). Haifa: Omnipress, 2010: 807-814.
|
[21] |
HE K, ZHANG X, REN S, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034.
|
[22] |
CHEN Y, DAI X, LIU M, et al. Dynamic ReLU[C]//Proceedings of Computer Vision-ECCV 2020: 16th European Conference. Berlin: Springer, 2020: 351-367.
|
[23] |
GOODFELLOW I J, ERHAN D, CARRIER P L, et al. Challenges in representation learning: a report on three machine learning contests[C]//Neural Information Processing: 20th International Conference, ICONIP 2013. Berlin: Springer, 2013: 117-124.
|
[24] |
BARSOUM E, ZHANG C, FERRER C C, et al. Training deep networks for facial expression recognition with crowd-sourced label distribution[C]//Proceedings of the 18th ACM International Conference on Multimodal Interaction. New York: ACM, 2016: 279-283.
|
[25] |
LI S, DENG W, DU J P. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2852-2861.
|
[26] |
HUANG G, LIU Z, LAURENS V, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
|
[27] |
SHAO J, QIAN Y. Three convolutional neural network models for facial expression recognition in the wild[J]. Neurocomputing, 2019, 355: 82-92. doi: 10.1016/j.neucom.2019.05.005
|
[28] |
JIANG P, WAN B, WANG Q, et al. Fast and efficient facial expression recognition using a Gabor convolutional network[J]. IEEE Signal Processing Letters, 2020, 27: 1954-1958. doi: 10.1109/LSP.2020.3031504
|
[29] |
WANG K, PENG X, YANG J, et al. Region attention networks for pose and occlusion robust facial expression re-cognition[J]. IEEE Transactions on Image Processing, 2020, 29: 4057-4069. doi: 10.1109/TIP.2019.2956143
|
[30] |
MOLLAHOSSEINI A, HASANI B, MAHOOR M H. AffectNet: a database for facial expression, valence, and arousal computing in the wild[J]. IEEE Transactions on Affective Computing, 2017, 10(1): 18-31.
|
[31] |
SANG D V, LE T, HA P T. Discriminative deep feature learning for facial emotion recognition[C]//Proceedings of 2018 1st International Conference on Multimedia Analy-sis and Pattern Recognition. Ho Chi Minh City: IEEE, 2018: 1-6.
|
[32] |
MINAEE S, ABDOLRASHIDI A. Deep-emotion: facial expression recognition using attentional convolutional network[J]. Sensors, 2021, 21(9): 3046/1-16.
|
[33] |
ZHOU L, FAN X, TJAHJADI T, et al. Discriminative attention-augmented feature learning for facial expression recognition in the wild[J]. Neural Computing and Applications, 2022, 34(2): 925-936. doi: 10.1007/s00521-021-06045-z
|
[34] |
LI Y, ZENG J, SHAN S, et al. Occlusion aware facial expression recognition using CNN with attention mechanism[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2439-2450.
|
[35] |
GAN Y, CHEN J, YANG Z, et al. Multiple attention network for facial expression recognition[J]. IEEE Access, 2020, 8: 7383-7393. doi: 10.1109/ACCESS.2020.2963913
|
[36] |
MA H, CELIK T, LI H C. Lightweight attention convolutional neural network through network slimming for robust facial expression recognition[J]. Signal Image and Video Processing, 2021, 15: 1507-1515. doi: 10.1007/s11760-021-01883-9
|