Citation: | LIU Lingyu, ZHANG Yuxiang, ZHOU Fengchen, MA Zhen, YAO Chuan, ZHAO Wenbo, WU Yuhao, YE Zixing, TIE Shaolong, NAN Junmin. Carbon Nano-fragments and Nickel Glass Carbon Electrode for the Electrochemical Detection of Nifedipine[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 49-54. DOI: 10.6054/j.jscnun.2023019 |
[1] |
ZENG Q, WEI T, WANG M, et al. Polyfurfural film modified glassy carbon electrode for highly sensitive nifedipine determination[J]. Electrochimica Acta, 2015, 186: 465-470. doi: 10.1016/j.electacta.2015.10.141
|
[2] |
WANG D, JIANG K, YANG S, et al. Determination of nifedipine in human plasma by ultra performance liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study[J]. Journal of Chromatography B, 2011, 879: 1827-1832. doi: 10.1016/j.jchromb.2011.04.034
|
[3] |
TULASAMMA P, VENKATES P. Spectrophotometric determination of nifedipine in pharmaceutical formulations, serum and urine samples via oxidative coupling reaction[J]. Arabian Journal of Chemistry, 2016, 9: 1603-1609. doi: 10.1016/j.arabjc.2012.04.025
|
[4] |
AHMADI-KASHANI M, DEHGHANI H. A novel selective ternary platform fabricated with MgAl-layered double hydroxide/NiMn2O4 functionalized polyaniline nanocomposite deposited on a glassy carbon electrode for electrochemical sensing of levodopa[J]. Colloids and Surfaces B: Biointerfaces, 2020, 194: 111134/1-11. doi: 10.1016/j.colsurfb.2020.111134
|
[5] |
AGRAWAL N, SAVALIA R, CHATTERJEE S. Nanostru-ctured zinc oxide film amalgamated with functionalized carbon nanotubes for facile electrochemical determination of nifedipine[J]. Colloids and Surfaces B: Biointerfaces, 2021, 201: 111635/1-13. doi: 10.1016/j.colsurfb.2021.111635
|
[6] |
ZHU X, JIAO Q, ZHANG C, et al. Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel(Ⅱ) oxides and graphene[J]. Microchimica Acta, 2013, 180: 477-483. doi: 10.1007/s00604-013-0955-1
|
[7] |
ZHU X, JIAO Q, ZUO X, et al. An electrochemical sensor based on carbon nano-fragments and β-cyclodextrin composite-modified glassy carbon electrode for the determination of rutin[J]. Journal of the Electrochemical Society, 2013, 160: 699-703. doi: 10.1149/2.038310jes
|
[8] |
ZHU X, LIANG Y, ZUO X, et al. Novel water-soluble multi-nanopore graphene modified glassy carbon electrode for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid[J]. Electrochimica Acta, 2014, 143: 366-373. doi: 10.1016/j.electacta.2014.08.044
|
[9] |
MOKHTARI B, NEMATOLLAHI D, SALEHZADEH H. Elec-tro chemical simultaneous determination of nifedipine and its main metabolite dehydronifedipine using MWCNT modified glassy carbon electrode[J]. Journal of Molecular Liquids, 2018, 264: 543-549. doi: 10.1016/j.molliq.2018.05.082
|
[10] |
SHANG L, ZHAO F, ZENG B. Highly dispersive hollow PdAg alloy nanoparticles modified ionic liquid functionalized graphene nanoribbons for electrochemical sensing of nifedipine[J]. Electrochimica Acta, 2015, 168: 330-336. doi: 10.1016/j.electacta.2015.04.024
|
[11] |
YU Y, GUO M, YUAN M, et al. Nickel nanoparticle-modi-fied electrode for ultra-sensitive electrochemical detection of insulin[J]. Biosensors and Bioelectronics, 2016, 77: 215-219. doi: 10.1016/j.bios.2015.09.036
|
[12] |
DAS T R, SHARMA P K. Hydrothermal-assisted green synthesis of Ni/Ag@rGO nanocomposite using Punica granatum juice and electrochemical detection of ascorbic acid[J]. Microchemical Journal, 2020, 156: 104850/1-10. doi: 10.1016/j.microc.2020.104850
|
[13] |
ZHANG C, ZENG L, ZHU X, et al. Electrocatalytic oxidation and simultaneous determination of catechol and hydroquinone at a novel carbon nano-fragment modified glassy carbon electrode[J]. Analytical Methods, 2013, 5: 2203-2208. doi: 10.1039/c3ay26603f
|
[14] |
LIU L, MA Z, ZHU X, et al. A glassy carbon electrode modified with carbon nano-fragments and bismuth oxide for electrochemical analysis of trace catechol in the presence of high concentrations of hydroquinone[J]. Microchimica Acta, 2016, 183: 3293-3301. doi: 10.1007/s00604-016-1973-6
|
[15] |
LIU L, MA Z, ZHU X, et al. Electrochemical behavior and simultaneous determination of catechol, resorcinol, and hydroquinone using thermally reduced carbon nano-fragment modified glassy carbon electrode[J]. Analytical Methods, 2016, 8: 605-613. doi: 10.1039/C5AY02559A
|
[16] |
ALSHAHRANI L A, LIU L, SATHISHKUMAR P, et al. Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life water samples[J]. Journal of Electroanalytical Chemistry, 2018, 815: 68-75. doi: 10.1016/j.jelechem.2018.03.004
|
[17] |
MA Z, CUI Y, ZUO X X, et al. Preparation of reconstructed carbon nanosheet powders and their efficient lithium-ion storage mechanism[J]. Electrochimica Acta, 2015, 174: 1268-1277. doi: 10.1016/j.electacta.2015.06.060
|
[18] |
BALAMURUGAN M, ALAGUMALAI K, CHEN T W, et al. Simutaneous electrochemical determination of nitrofurantoin and nifedipine with assistance of needle-shaped perovskite structure: barium stannate fabricated glassy carbon electrode[J]. Microchimica Acta, 2021, 188: 19-26. doi: 10.1007/s00604-020-04645-5
|
[19] |
KHAIRY M, KHORSHED A A, RASHWAN F A, et al. Simultaneous voltammetric determination of antihypertensive drugs nifedipine and atenolol utilising MgO nanaoplatelet modified screen-printed electrodes in pharmaceuticals and human fluids[J]. Sensors and Actuators B: Chemical, 2017, 252: 1045-1054. doi: 10.1016/j.snb.2017.06.105
|
[20] |
WANG Q G, ZHAO R N, WANG S M, et al. A highly selective electrochemical sensor for nifedipine based on layer-by-layer assembly films from polyaniline and multiwalled carbon nanotube[J]. Journal of Applied Polymer Science, 2016, 133: 1-9.
|