• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LIU Lingyu, ZHANG Yuxiang, ZHOU Fengchen, MA Zhen, YAO Chuan, ZHAO Wenbo, WU Yuhao, YE Zixing, TIE Shaolong, NAN Junmin. Carbon Nano-fragments and Nickel Glass Carbon Electrode for the Electrochemical Detection of Nifedipine[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 49-54. DOI: 10.6054/j.jscnun.2023019
Citation: LIU Lingyu, ZHANG Yuxiang, ZHOU Fengchen, MA Zhen, YAO Chuan, ZHAO Wenbo, WU Yuhao, YE Zixing, TIE Shaolong, NAN Junmin. Carbon Nano-fragments and Nickel Glass Carbon Electrode for the Electrochemical Detection of Nifedipine[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 49-54. DOI: 10.6054/j.jscnun.2023019

Carbon Nano-fragments and Nickel Glass Carbon Electrode for the Electrochemical Detection of Nifedipine

More Information
  • Received Date: March 16, 2022
  • Available Online: June 13, 2023
  • Carbon nano-fragments-nickel (CNF-Ni) composites were synthesized by sol-gel thermal reduction method for the modification of glassy carbon electrodes and applied in the electrochemical sensor construction of nifedipine. The morphology and catalytic characteristic of CNF-Ni/GCE electrode were studied employing field emission scanning electron microscope, X-ray diffraction, fourier infrared spectrometer, and electrochemical technology. The results indicated that CNF-Ni/GCE electrode exhibited favourable electrocatalytic performance for nifedipine determination. Under the optimal conditions, using differential pulse voltammetry (DPV), the linear relationship between anode peak current and nifedipine concentrations was obtained from 4 to 160 μmol/L, and the detection limits was 2 μmol/L. The proposed method was employed to determine nifedipine in the actual drug detection.
  • [1]
    ZENG Q, WEI T, WANG M, et al. Polyfurfural film modified glassy carbon electrode for highly sensitive nifedipine determination[J]. Electrochimica Acta, 2015, 186: 465-470. doi: 10.1016/j.electacta.2015.10.141
    [2]
    WANG D, JIANG K, YANG S, et al. Determination of nifedipine in human plasma by ultra performance liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study[J]. Journal of Chromatography B, 2011, 879: 1827-1832. doi: 10.1016/j.jchromb.2011.04.034
    [3]
    TULASAMMA P, VENKATES P. Spectrophotometric determination of nifedipine in pharmaceutical formulations, serum and urine samples via oxidative coupling reaction[J]. Arabian Journal of Chemistry, 2016, 9: 1603-1609. doi: 10.1016/j.arabjc.2012.04.025
    [4]
    AHMADI-KASHANI M, DEHGHANI H. A novel selective ternary platform fabricated with MgAl-layered double hydroxide/NiMn2O4 functionalized polyaniline nanocomposite deposited on a glassy carbon electrode for electrochemical sensing of levodopa[J]. Colloids and Surfaces B: Biointerfaces, 2020, 194: 111134/1-11. doi: 10.1016/j.colsurfb.2020.111134
    [5]
    AGRAWAL N, SAVALIA R, CHATTERJEE S. Nanostru-ctured zinc oxide film amalgamated with functionalized carbon nanotubes for facile electrochemical determination of nifedipine[J]. Colloids and Surfaces B: Biointerfaces, 2021, 201: 111635/1-13. doi: 10.1016/j.colsurfb.2021.111635
    [6]
    ZHU X, JIAO Q, ZHANG C, et al. Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel(Ⅱ) oxides and graphene[J]. Microchimica Acta, 2013, 180: 477-483. doi: 10.1007/s00604-013-0955-1
    [7]
    ZHU X, JIAO Q, ZUO X, et al. An electrochemical sensor based on carbon nano-fragments and β-cyclodextrin composite-modified glassy carbon electrode for the determination of rutin[J]. Journal of the Electrochemical Society, 2013, 160: 699-703. doi: 10.1149/2.038310jes
    [8]
    ZHU X, LIANG Y, ZUO X, et al. Novel water-soluble multi-nanopore graphene modified glassy carbon electrode for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid[J]. Electrochimica Acta, 2014, 143: 366-373. doi: 10.1016/j.electacta.2014.08.044
    [9]
    MOKHTARI B, NEMATOLLAHI D, SALEHZADEH H. Elec-tro chemical simultaneous determination of nifedipine and its main metabolite dehydronifedipine using MWCNT modified glassy carbon electrode[J]. Journal of Molecular Liquids, 2018, 264: 543-549. doi: 10.1016/j.molliq.2018.05.082
    [10]
    SHANG L, ZHAO F, ZENG B. Highly dispersive hollow PdAg alloy nanoparticles modified ionic liquid functionalized graphene nanoribbons for electrochemical sensing of nifedipine[J]. Electrochimica Acta, 2015, 168: 330-336. doi: 10.1016/j.electacta.2015.04.024
    [11]
    YU Y, GUO M, YUAN M, et al. Nickel nanoparticle-modi-fied electrode for ultra-sensitive electrochemical detection of insulin[J]. Biosensors and Bioelectronics, 2016, 77: 215-219. doi: 10.1016/j.bios.2015.09.036
    [12]
    DAS T R, SHARMA P K. Hydrothermal-assisted green synthesis of Ni/Ag@rGO nanocomposite using Punica granatum juice and electrochemical detection of ascorbic acid[J]. Microchemical Journal, 2020, 156: 104850/1-10. doi: 10.1016/j.microc.2020.104850
    [13]
    ZHANG C, ZENG L, ZHU X, et al. Electrocatalytic oxidation and simultaneous determination of catechol and hydroquinone at a novel carbon nano-fragment modified glassy carbon electrode[J]. Analytical Methods, 2013, 5: 2203-2208. doi: 10.1039/c3ay26603f
    [14]
    LIU L, MA Z, ZHU X, et al. A glassy carbon electrode modified with carbon nano-fragments and bismuth oxide for electrochemical analysis of trace catechol in the presence of high concentrations of hydroquinone[J]. Microchimica Acta, 2016, 183: 3293-3301. doi: 10.1007/s00604-016-1973-6
    [15]
    LIU L, MA Z, ZHU X, et al. Electrochemical behavior and simultaneous determination of catechol, resorcinol, and hydroquinone using thermally reduced carbon nano-fragment modified glassy carbon electrode[J]. Analytical Methods, 2016, 8: 605-613. doi: 10.1039/C5AY02559A
    [16]
    ALSHAHRANI L A, LIU L, SATHISHKUMAR P, et al. Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life water samples[J]. Journal of Electroanalytical Chemistry, 2018, 815: 68-75. doi: 10.1016/j.jelechem.2018.03.004
    [17]
    MA Z, CUI Y, ZUO X X, et al. Preparation of reconstructed carbon nanosheet powders and their efficient lithium-ion storage mechanism[J]. Electrochimica Acta, 2015, 174: 1268-1277. doi: 10.1016/j.electacta.2015.06.060
    [18]
    BALAMURUGAN M, ALAGUMALAI K, CHEN T W, et al. Simutaneous electrochemical determination of nitrofurantoin and nifedipine with assistance of needle-shaped perovskite structure: barium stannate fabricated glassy carbon electrode[J]. Microchimica Acta, 2021, 188: 19-26. doi: 10.1007/s00604-020-04645-5
    [19]
    KHAIRY M, KHORSHED A A, RASHWAN F A, et al. Simultaneous voltammetric determination of antihypertensive drugs nifedipine and atenolol utilising MgO nanaoplatelet modified screen-printed electrodes in pharmaceuticals and human fluids[J]. Sensors and Actuators B: Chemical, 2017, 252: 1045-1054. doi: 10.1016/j.snb.2017.06.105
    [20]
    WANG Q G, ZHAO R N, WANG S M, et al. A highly selective electrochemical sensor for nifedipine based on layer-by-layer assembly films from polyaniline and multiwalled carbon nanotube[J]. Journal of Applied Polymer Science, 2016, 133: 1-9.

Catalog

    Article views (110) PDF downloads (36) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return