Citation: | ZHANG Ling, DONG Yuanyuan, LIU Zhongbing. Optimization of Precooling Strategy and Sensitivity Analysis of Energy Flexibility of the Phase Change Wall[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(2): 34-40. DOI: 10.6054/j.jscnun.2023017 |
[1] |
江亿, 胡姗. 中国建筑部门实现碳中和的路径[J]. 暖通空调, 2021, 51(5): 1-13.
JIANG Y, HU S. Paths to carbon neutrality in China's building sector[J]. Heating Ventilating & Air Conditioning, 2021, 51(5): 1-13.
|
[2] |
LU F, YU Z Y, ZOU Y, et al. Cooling system energy flexibility of a nearly zero-energy office building using building thermal mass: potential evaluation and parametric analysis[J]. Energy and Buildings, 2021, 236: 110763/1-4.
|
[3] |
卢金凯, 张梦, 李斌, 等. 功能化氧化石墨烯催化CO2的化学固定[J]. 华南师范大学学报(自然科学版), 2021, 53(3): 35-42. doi: 10.6054/j.jscnun.2021041
LU J K, ZHANG M, LI B, et al. Chemical fixation of CO2 catalyzed by functionalized graphene oxide[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(2): 35-42. doi: 10.6054/j.jscnun.2021041
|
[4] |
JOHRA H, HEISELBERG P, DRÉAU J L. Influence of envelope, structural thermal mass and indoor content on the building heating energy flexibility[J]. Energy and Buildings, 2019, 183: 325-339. doi: 10.1016/j.enbuild.2018.11.012
|
[5] |
FOTEINAKI K, LI R, PÉAN T, et al. Evaluation of energy flexibility of low-energy residential buildings connected to district heating[J]. Energy and Buildings, 2020, 213: 109804/1-14. doi: 10.1016/j.enbuild.2020.109804
|
[6] |
FOTEINAKI K, LI R, HELLER A, et al. Heating system energy flexibility of low-energy residential buildings[J]. Energy and Buildings, 2018, 180: 95-108. doi: 10.1016/j.enbuild.2018.09.030
|
[7] |
JIN X, MEDINA M A, ZHANG X S. On the importance of the location of PCMs in building walls for enhanced thermal performance[J]. Applied Energy, 2013, 106: 72-78. doi: 10.1016/j.apenergy.2012.12.079
|
[8] |
DIACONU B M, CRUCERU M. Novel concept of composite phase change material wall system for year-round thermal energy savings[J]. Energy and Buildings, 2010, 42(10): 1759-1772. doi: 10.1016/j.enbuild.2010.05.012
|
[9] |
WIJESURIYA S, BRANDT M, TABARES-VELASCO P C. Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate[J]. Applied Energy, 2018, 222: 497-514. doi: 10.1016/j.apenergy.2018.03.119
|
[10] |
YIN R, XU P, PIETTE M A, et al. Study on auto-DR and pre-cooling of commercial buildings with thermal mass in California[J]. Energy and Buildings, 2010, 42(7): 967-975. doi: 10.1016/j.enbuild.2010.01.008
|
[11] |
TURNER W J N, WALKER I S, ROUX J. Peak load reductions: electric load shifting with mechanical pre-cooling of residential buildings with low thermal mass[J]. Energy, 2015, 82: 1057-1067. doi: 10.1016/j.energy.2015.02.011
|
[12] |
KATIPAMULA S, LU N. Evaluation of residential HVAC control strategies for demand response programs[J]. ASHRAE Transactions, 2006, 112: 535-546.
|
[13] |
SOVETOVA M, MEMON S A, KIM J. Thermal performance and energy efficiency of building integrated with PCMs in hot desert Climate Region[J]. Solar Energy, 2019, 189: 357-371. doi: 10.1016/j.solener.2019.07.067
|
[14] |
TUNÇBILEK E, ARICI M, KRAJČÍK M, et al. Thermal performance based optimization of an office wall containing PCM under intermittent cooling operation[J]. Applied Thermal Engineering, 2020, 179: 115750/1-12. doi: 10.1016/j.applthermaleng.2020.115750
|
[15] |
JIN X, MEDINA M A, ZHANG X S. Numerical analysis for the optimal location of a thin PCM layer in frame walls[J]. Applied Thermal Engineering, 2016, 103: 1057-1063. doi: 10.1016/j.applthermaleng.2016.04.056
|
[16] |
LI M L, CAO Q, PAN H, et al. Effect of melting point on thermodynamics of thin PCM reinforced residential frame walls in different climate zones[J]. Applied Thermal Engineering, 2021, 188: 116615/1-21. doi: 10.1016/j.applthermaleng.2021.116615
|
[17] |
中国气象局气象信息中心气象资料室, 清华大学建筑技术系. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005.
|
[18] |
LUO Z Y, YANG S, XIE N, et al. Multi-objective capacity optimization of a distributed energy system considering economy, environment and energy[J]. Energy Conversion and Management, 2019, 200: 112081/1-17. doi: 10.1016/j.enconman.2019.112081
|
[19] |
柳鹏鹏, 朱娜, 胡平放, 等. 一种新型双层定型相变墙体节能效果分析[J]. 建筑科学, 2015, 31(13): 72-79.
LIU P P, ZHU N, HU P F, et al. Analysis of energy-saving effect of a new type of double-layer stereotyped phase change wall[J]. Building Science, 2015, 31(13): 72-79.
|
[20] |
SU X S, ZHANG L, LIU Z B, et al. Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler[J]. Renewable Energy, 2021, 171: 1061-1078. doi: 10.1016/j.renene.2021.02.164
|