• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
HU Lingzhi, FU Chengzhou, CAI Yongming, YANG Jin, TANG Deyu. Application of Spherical Evolution Extreme Learning Machine in Intelligent Prediction of Drug Target Interaction[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 121-128. DOI: 10.6054/j.jscnun.2023012
Citation: HU Lingzhi, FU Chengzhou, CAI Yongming, YANG Jin, TANG Deyu. Application of Spherical Evolution Extreme Learning Machine in Intelligent Prediction of Drug Target Interaction[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 121-128. DOI: 10.6054/j.jscnun.2023012

Application of Spherical Evolution Extreme Learning Machine in Intelligent Prediction of Drug Target Interaction

More Information
  • Received Date: September 12, 2022
  • Available Online: April 11, 2023
  • To solve the problems of time-consuming and costly wet experiments for drug development, machine learning has been applied to the prediction of drug-target interactions. At the same time, in order to solve the constraints of machine learning in building drug-target interaction models, it is subject to various problems such as class imbalance of classifiers and parameter optimization. The paper proposes a drug-target interaction prediction method (SEELM-DTI) based on a spherical evolution extreme learning machine, which mainly uses a screening method to select high confidence negative samples and a spherical evolution to optimize the parameters of the extreme learning machine. The researcn compared SEELM-DTI with SELF-BLM, NetLapRLS, WNN-GIP, SPLCMF, BLM-NII in a benchmark dataset and evaluated the metrics of AUC and AUPR.The experimental results showed that the SEELM-DTI outperformed other benchmark algorithms and solved the class imbalance and parameter optimization. Finally, the effectiveness of SEELM-DTI in predicting drug-target interactions was validated on several commonly used drug databases.
  • [1]
    DUDLEY J T, DESHPANDE T, BUTTE A J. Exploiting drug-disease relationships for computational drug repositioning[J]. Briefings in Bioinformatics, 2011, 12(4): 303-311. doi: 10.1093/bib/bbr013
    [2]
    PAUWELS E, VÉRONIQUE S, YAMANISHI Y. Predicting drug side-effect profiles: a chemical fragment-based approach[J]. BMC Bioinformatics, 2011, 12(1): 169/1-13.
    [3]
    JOSHUA S J. Mining small-molecule screens to repurpose drugs[J]. Briefings in Bioinformatics, 2011(4): 327-335.
    [4]
    MORRIS G M, HUEY R, LINDSTROM W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility[J]. Journal of Computational Chemistry, 2009, 30(16): 2785-2791. doi: 10.1002/jcc.21256
    [5]
    KEISER M J, ROTH B L, ARMBRUSTER B N, et al. Relating protein pharmacology by ligand chemistry[J]. Nature Biotechnology, 2007, 25(2): 197-206. doi: 10.1038/nbt1284
    [6]
    ALI E, WU M, LI X L, et al. Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey[J]. Briefings in Bioinformatics, 2019, 20(4): 1337-1357. doi: 10.1093/bib/bby002
    [7]
    HU S S, ZHANG C L, CHEN P, et al. Predicting drug-target interactions from drug structure and protein sequence using novel convolutional neural networks[J]. BMC Bioinformatics, 2019, 20(25): 689/1-12.
    [8]
    YAMANISHI Y, ARAKI M, GUTTERIDGE A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces[J]. Bioinforma-tics, 2008, 24(13): 232-240. doi: 10.1093/bioinformatics/btn162
    [9]
    MEI J P, KWOH C K, YANG P, et al. Drug-target interaction prediction by learning from local information and neighbors[J]. Bioinformatics, 2013, 29(2): 238-245. doi: 10.1093/bioinformatics/bts670
    [10]
    HAO D, ICHIGAKU T, HIROSHI M, et al. Similarity-based machine learning methods for predicting drug-target interactions: a brief review[J]. Briefings in Bioinformatics, 2014, 15(5): 734-747. doi: 10.1093/bib/bbt056
    [11]
    OLAYAN R S, HAITHAM A, BAJIC V B. DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches[J]. Bioinformatics, 2018, 34(7): 1164-1173. doi: 10.1093/bioinformatics/btx731
    [12]
    LAN W, WANG J, LI M, et al. Predicting drug-target interaction using positive-unlabeled learning[J]. Neurocomputing, 2016, 206: 50-57. doi: 10.1016/j.neucom.2016.03.080
    [13]
    罗辛, 欧阳元新, 熊璋, 等. 通过相似度支持度优化基于K近邻的协同过滤算法[J]. 计算机学报, 2010(8): 1437-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201008014.htm

    LUO X, OUYANG Y X, XIONG Z, et al. The effect of similarity support in K-nearest-neighborhood based collaborative filtering[J]. Chinese Journal of Computers, 2010, 33(8): 1438-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201008014.htm
    [14]
    LI Z C, HUANG M H, ZHONG W Q, et al. Identification of drug-target interaction from interactome network with guilt-by-association principle and topology features[J]. Bioinformatics, 2016, 32(7): 1057-1064. doi: 10.1093/bioinformatics/btv695
    [15]
    BI X, MA H, LI J H, et al. A positive and unlabeled learning framework based on extreme learning machine for drug-drug interactions discovery[J]. Journal of Ambient Intelligence and Humanized Computing, 2018(2): 1-12.
    [16]
    AN J Y, MENG F R, YAN Z J. An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features[J]. BioData Mining, 2021, 14(3): 1-17.
    [17]
    HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//IEEE International Joint Conference on Neural Networks. Budapest: IEEE, 2005.
    [18]
    LIU H, SUN J J, GUAN J H, et al. Improving compound-protein interaction prediction by building up highly credible negative samples[J]. Bioinformatics, 2015(12): 221-229.
    [19]
    TANG D Y. Spherical evolution for solving continuous optimization problems[J]. Applied Soft Computing, 2019, 81: 1-20.
    [20]
    MEI J P, KWOH C K, YANG P, et al. Drug-target interaction prediction by learning from local information and neighbors[J]. Bioinformatics, 2013, 29(2): 238-245. doi: 10.1093/bioinformatics/bts670
    [21]
    KEUM J, NAM H. SELF-BLM: prediction of drug-target interactions via self-training SVM[J]. PlosOne, 2017, 12(2): e0171839/1-21.
    [22]
    ZHENG X, WU L Y, ZHOU X, et al. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces[J]. BMC Systems Biology, 2010, 4(2): 123-131.
    [23]
    XIA L Y, YANG Z Y, ZHANG H, et al. Improved prediction of drug-target interactions using self-paced learning with collaborative matrix factorization[J]. Journal of Chemical Information and Modeling, 2019, 59(7): 3340-3351.
    [24]
    LUO H, LI M, YANG M, et al. Biomedical data and computational models for drug repositioning: a comprehensive review[J]. Briefings in Bioinformatics, 2021, 22(2): 1604-1619.
    [25]
    SMEJKAL J, BORANIĆ M. Serotonin and serotoninergic agents affect proliferation of normal and transformed lymphoid cells[J]. Immunopharmacology and Immunoto-xicology, 1995, 17(1): 151-162.
  • Cited by

    Periodical cited type(6)

    1. 方艳林,王升帅,张伟,张妮,谢璇,张厚勇. 基于PEMS的非四机械尾气碳排放特征探析. 环境监控与预警. 2025(01): 98-102 .
    2. 吴雨涟,杨洁,邵智娟,沈春其,裴程伟,秦龙飞,郑嘉兴,徐婷婷,阚诗烨,宋程璐,崔璀. 苏州市机动车排放清单及特征研究. 环境科学学报. 2024(09): 129-139 .
    3. 陈佳昊,项雅静. 基于拥堵系数的上海市道路高分辨率碳排放时空分配方法研究. 环境科学与管理. 2024(11): 16-21 .
    4. 石文哲,王峰,付合英,李忠飞,王亮,于海洋,唐忠锋. 基于全生命周期法的矿用柴油重卡碳核算. 环境工程学报. 2023(06): 1907-1914 .
    5. 菅月诚,彭娜娜,高艳珊,王强. “双碳”背景下细颗粒物和臭氧污染研究进展. 能源环境保护. 2023(05): 190-200 .
    6. 代洪娜,曾煜磊,施庆利,孙婷. 碳达峰与碳中和背景下省域高速公路网碳排放精细化测算方法. 华南师范大学学报(自然科学版). 2023(04): 1-13 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return