Citation: | HU Lingzhi, FU Chengzhou, CAI Yongming, YANG Jin, TANG Deyu. Application of Spherical Evolution Extreme Learning Machine in Intelligent Prediction of Drug Target Interaction[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 121-128. DOI: 10.6054/j.jscnun.2023012 |
[1] |
DUDLEY J T, DESHPANDE T, BUTTE A J. Exploiting drug-disease relationships for computational drug repositioning[J]. Briefings in Bioinformatics, 2011, 12(4): 303-311. doi: 10.1093/bib/bbr013
|
[2] |
PAUWELS E, VÉRONIQUE S, YAMANISHI Y. Predicting drug side-effect profiles: a chemical fragment-based approach[J]. BMC Bioinformatics, 2011, 12(1): 169/1-13.
|
[3] |
JOSHUA S J. Mining small-molecule screens to repurpose drugs[J]. Briefings in Bioinformatics, 2011(4): 327-335.
|
[4] |
MORRIS G M, HUEY R, LINDSTROM W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility[J]. Journal of Computational Chemistry, 2009, 30(16): 2785-2791. doi: 10.1002/jcc.21256
|
[5] |
KEISER M J, ROTH B L, ARMBRUSTER B N, et al. Relating protein pharmacology by ligand chemistry[J]. Nature Biotechnology, 2007, 25(2): 197-206. doi: 10.1038/nbt1284
|
[6] |
ALI E, WU M, LI X L, et al. Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey[J]. Briefings in Bioinformatics, 2019, 20(4): 1337-1357. doi: 10.1093/bib/bby002
|
[7] |
HU S S, ZHANG C L, CHEN P, et al. Predicting drug-target interactions from drug structure and protein sequence using novel convolutional neural networks[J]. BMC Bioinformatics, 2019, 20(25): 689/1-12.
|
[8] |
YAMANISHI Y, ARAKI M, GUTTERIDGE A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces[J]. Bioinforma-tics, 2008, 24(13): 232-240. doi: 10.1093/bioinformatics/btn162
|
[9] |
MEI J P, KWOH C K, YANG P, et al. Drug-target interaction prediction by learning from local information and neighbors[J]. Bioinformatics, 2013, 29(2): 238-245. doi: 10.1093/bioinformatics/bts670
|
[10] |
HAO D, ICHIGAKU T, HIROSHI M, et al. Similarity-based machine learning methods for predicting drug-target interactions: a brief review[J]. Briefings in Bioinformatics, 2014, 15(5): 734-747. doi: 10.1093/bib/bbt056
|
[11] |
OLAYAN R S, HAITHAM A, BAJIC V B. DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches[J]. Bioinformatics, 2018, 34(7): 1164-1173. doi: 10.1093/bioinformatics/btx731
|
[12] |
LAN W, WANG J, LI M, et al. Predicting drug-target interaction using positive-unlabeled learning[J]. Neurocomputing, 2016, 206: 50-57. doi: 10.1016/j.neucom.2016.03.080
|
[13] |
罗辛, 欧阳元新, 熊璋, 等. 通过相似度支持度优化基于K近邻的协同过滤算法[J]. 计算机学报, 2010(8): 1437-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201008014.htm
LUO X, OUYANG Y X, XIONG Z, et al. The effect of similarity support in K-nearest-neighborhood based collaborative filtering[J]. Chinese Journal of Computers, 2010, 33(8): 1438-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201008014.htm
|
[14] |
LI Z C, HUANG M H, ZHONG W Q, et al. Identification of drug-target interaction from interactome network with guilt-by-association principle and topology features[J]. Bioinformatics, 2016, 32(7): 1057-1064. doi: 10.1093/bioinformatics/btv695
|
[15] |
BI X, MA H, LI J H, et al. A positive and unlabeled learning framework based on extreme learning machine for drug-drug interactions discovery[J]. Journal of Ambient Intelligence and Humanized Computing, 2018(2): 1-12.
|
[16] |
AN J Y, MENG F R, YAN Z J. An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features[J]. BioData Mining, 2021, 14(3): 1-17.
|
[17] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//IEEE International Joint Conference on Neural Networks. Budapest: IEEE, 2005.
|
[18] |
LIU H, SUN J J, GUAN J H, et al. Improving compound-protein interaction prediction by building up highly credible negative samples[J]. Bioinformatics, 2015(12): 221-229.
|
[19] |
TANG D Y. Spherical evolution for solving continuous optimization problems[J]. Applied Soft Computing, 2019, 81: 1-20.
|
[20] |
MEI J P, KWOH C K, YANG P, et al. Drug-target interaction prediction by learning from local information and neighbors[J]. Bioinformatics, 2013, 29(2): 238-245. doi: 10.1093/bioinformatics/bts670
|
[21] |
KEUM J, NAM H. SELF-BLM: prediction of drug-target interactions via self-training SVM[J]. PlosOne, 2017, 12(2): e0171839/1-21.
|
[22] |
ZHENG X, WU L Y, ZHOU X, et al. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces[J]. BMC Systems Biology, 2010, 4(2): 123-131.
|
[23] |
XIA L Y, YANG Z Y, ZHANG H, et al. Improved prediction of drug-target interactions using self-paced learning with collaborative matrix factorization[J]. Journal of Chemical Information and Modeling, 2019, 59(7): 3340-3351.
|
[24] |
LUO H, LI M, YANG M, et al. Biomedical data and computational models for drug repositioning: a comprehensive review[J]. Briefings in Bioinformatics, 2021, 22(2): 1604-1619.
|
[25] |
SMEJKAL J, BORANIĆ M. Serotonin and serotoninergic agents affect proliferation of normal and transformed lymphoid cells[J]. Immunopharmacology and Immunoto-xicology, 1995, 17(1): 151-162.
|