• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
DING Kexin, ZHONG Zhi, ZHU Jie. Stochastic and Preemptive Task Offloading for Edge-cloud Computing[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 113-120. DOI: 10.6054/j.jscnun.2023011
Citation: DING Kexin, ZHONG Zhi, ZHU Jie. Stochastic and Preemptive Task Offloading for Edge-cloud Computing[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 113-120. DOI: 10.6054/j.jscnun.2023011

Stochastic and Preemptive Task Offloading for Edge-cloud Computing

More Information
  • Received Date: December 25, 2022
  • Available Online: April 11, 2023
  • The edge-cloud computing systems are widely used to support various computation services. Aiming at the problem of task offloading and scheduling in edge-cloud computing environments, a stochastic task offloading problem in the edge-cloud computing system is considered. A greedy simulated annealing heuristic algorithm based online offloading framework(SAOF)is proposed for the problem under study, which periodically schedules and offloads tasks according to the required transmission delays and computation times. In consideration of the stochastic arrival of independent tasks and the heterogeneity of resources, SAOF assigns tasks to the appropriate destination (edge servers or cloud servers) dynamically and allocates computing resources to each task preemptively according to its latency-sensitivity. The goal is to minimize the sum of weighted response times of all the tasks. Testing instances are generated under the combination of various parameter settings for evaluation experiments. SAOF is compared with three excellent scheduling optimization algorithms(Selfish algorithm, Nearest algorithm and OnDisc algorithm). Experimental results indicate that SAOF can more effectively reduce the total weighted response time of all tasks.
  • [1]
    AMAZON. Aws IoT greengrass[R/OL]. (2017-06-07)[2022-12-26]. https://docs.aws.amazon.com/zhcn/greengrass/latest/developerguide/what-is-gg.html.
    [2]
    GOOGLE. Google cloudiot edge[R/OL]. (2018-08-06)[2022-12-26]. https://cloud.google.com/iot-edge.
    [3]
    AZURE. Azureiot edge[R/OL]. (2017-11-16)[2022-12-26]. https://github.com/Azure/iotedge.
    [4]
    XIONG Y H, HUANG S Z, WU M, et al. A Johnson's-rule based genetic algorithm for two-stage-task scheduling problem in data-centers of cloud computing[J]. IEEE Transactions on Cloud Computing, 2019, 7(3): 597-610. doi: 10.1109/TCC.2017.2693187
    [5]
    SAHOO S, SAHOO B, TURUK A K. A learning automata-based scheduling for dead-line sensitive task in the cloud[J]. IEEE Transactions on Services Computing, 2021, 14(6): 1662-1674. doi: 10.1109/TSC.2019.2906870
    [6]
    ABBAS N, ZHANG Y, TAHERKORDI A, et al. Mobile edge computing: a survey[J]. IEEE Internet of Things Journal, 2018, 5(1): 450-465. doi: 10.1109/JIOT.2017.2750180
    [7]
    JONATHAN A, RYDEN M, OH K, et al. Nebula: distributed edge cloud for data intensive computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(11): 3229-3242. doi: 10.1109/TPDS.2017.2717883
    [8]
    PAN J, MCELHANNON J. Future edge cloud and edge computing for internet of things applications[J]. IEEE Internet of Things Journal, 2018, 5(1): 439-449. doi: 10.1109/JIOT.2017.2767608
    [9]
    SAHNI Y, CAO H N, YANG L. Data-aware task allocation for achieving low latency in collaborative edge computing[J]. IEEE Internet of Things Journal, 2019, 6(2): 3512-3524. doi: 10.1109/JIOT.2018.2886757
    [10]
    CHEN L, WU J G, ZHANG J, et al. Dependency-aware computation offloading for mobile edge computing with edge-cloud cooperation[J]. IEEE Transactions on Cloud Computing, 2020, 10(4): 2451-2468.
    [11]
    MENG J Y, TAN H S, LI X Y, et al. Online deadline-aware task dispatching and scheduling in edge computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(6): 1270-1286. doi: 10.1109/TPDS.2019.2961905
    [12]
    FANG X L, CAI Z P, TANG W Y, et al. Job scheduling to minimize total completion time on multiple edge servers[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2245-2255. doi: 10.1109/TNSE.2019.2958281
    [13]
    CHEN Q L, KUANG Z F, ZHAO L. Multiuser computation offloading and resource allocation for cloud edge heterogeneous network[J]. IEEE Internet of Things Journal, 2022, 9(5): 3799-3811. doi: 10.1109/JIOT.2021.3100117
    [14]
    NAOURI A, WU H X, NOURI N A, et al. A novel framework for mobile-edge computing by optimizing task offloading[J]. IEEE Internet of Things Journal, 2021, 8(16): 13065-13076. doi: 10.1109/JIOT.2021.3064225
    [15]
    黄冬晴, 俞黎阳, 陈珏, 等. 面向移动边缘计算的联合计算卸载和资源分配策略研究[J]. 华东师范大学学报(自然科学版), 2021(6): 88-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HDSZ202106010.htm
    [16]
    DING S Y, LIN D H. Dynamic task allocation for cost-efficient edge cloud computing[C]//IEEE Proceedings of the International Conference on Services Computing (SCC). Beijing: IEEE, 2020: 218-225.
    [17]
    YUAN H, TANG G M, LI X Y, et al. Online dispatching and fair scheduling of edge computing tasks: a learning-based approach[J]. IEEE Internet of Things Journal, 2021, 8(19): 14985-14998. doi: 10.1109/JIOT.2021.3073034
    [18]
    WU H M, WOLTER K, JIAO P F, et al. Eedto: an energy-efficient dynamic task offloading algorithm for blockchain-enabled IoT-Edge-cloud orchestrated computing[J]. IEEE Internet of Things Journal, 2021, 8(4): 2163-2176. doi: 10.1109/JIOT.2020.3033521
    [19]
    吴学文, 廖婧贤. 云边协同系统中基于博弈论的资源分配与任务卸载方案[J]. 系统仿真学报, 2022, 34(7): 1468-1481. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202207009.htm
    [20]
    DINH T Q, TANG J H, LA Q D, et al. Offloading in mobile edge computing: task allocation and computational frequency scaling[J]. IEEE Transactions on Communications, 2017, 65(8): 3571-3584.
    [21]
    REISS C, WIKES J, HELLERSTEIN J L. Google cluster-usage traces: format+schema[R]. Google Inc. White Paper, 2011.
    [22]
    HAN Z H, TAN H S, LI X Y, et al. OnDisc: online latency-sensitive job dispatching and scheduling in heterogeneous edge-clouds[J]. IEEE ACM Transactions on Networking, 2019, 27(6): 2472-2485. doi: 10.1109/TNET.2019.2953806
    [23]
    MA X, LIN C, ZHANG H, et al. Energy-aware computation offloading of IoT sensors in cloudlet-based mobile edge computing[J]. Sensors, 2018, 18(6): 1945-1950. doi: 10.3390/s18061945
    [24]
    MA X, LIN C, XIANG X D, et al. Game-theoretic analysis of computation offloading for cloudlet-based mobile cloud computing[C]//ACM International Conference. Mexico: ACM, 2015: 271-278.
    [25]
    JIA M, CAO J N, LIANG W F. Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks[J]. IEEE Transactions on Cloud Computing, 2017, 5(4): 725-737. doi: 10.1109/TCC.2015.2449834
    [26]
    TAWALBEH L, JARARWEH Y, ABABNEH F, et al. Large scale cloudlets deployment for efficient mobile cloud computing[J]. Journal of Networks, 2015, 10(1): 70-76.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return