Citation: | DING Kexin, ZHONG Zhi, ZHU Jie. Stochastic and Preemptive Task Offloading for Edge-cloud Computing[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 113-120. DOI: 10.6054/j.jscnun.2023011 |
[1] |
AMAZON. Aws IoT greengrass[R/OL]. (2017-06-07)[2022-12-26]. https://docs.aws.amazon.com/zhcn/greengrass/latest/developerguide/what-is-gg.html.
|
[2] |
GOOGLE. Google cloudiot edge[R/OL]. (2018-08-06)[2022-12-26]. https://cloud.google.com/iot-edge.
|
[3] |
AZURE. Azureiot edge[R/OL]. (2017-11-16)[2022-12-26]. https://github.com/Azure/iotedge.
|
[4] |
XIONG Y H, HUANG S Z, WU M, et al. A Johnson's-rule based genetic algorithm for two-stage-task scheduling problem in data-centers of cloud computing[J]. IEEE Transactions on Cloud Computing, 2019, 7(3): 597-610. doi: 10.1109/TCC.2017.2693187
|
[5] |
SAHOO S, SAHOO B, TURUK A K. A learning automata-based scheduling for dead-line sensitive task in the cloud[J]. IEEE Transactions on Services Computing, 2021, 14(6): 1662-1674. doi: 10.1109/TSC.2019.2906870
|
[6] |
ABBAS N, ZHANG Y, TAHERKORDI A, et al. Mobile edge computing: a survey[J]. IEEE Internet of Things Journal, 2018, 5(1): 450-465. doi: 10.1109/JIOT.2017.2750180
|
[7] |
JONATHAN A, RYDEN M, OH K, et al. Nebula: distributed edge cloud for data intensive computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(11): 3229-3242. doi: 10.1109/TPDS.2017.2717883
|
[8] |
PAN J, MCELHANNON J. Future edge cloud and edge computing for internet of things applications[J]. IEEE Internet of Things Journal, 2018, 5(1): 439-449. doi: 10.1109/JIOT.2017.2767608
|
[9] |
SAHNI Y, CAO H N, YANG L. Data-aware task allocation for achieving low latency in collaborative edge computing[J]. IEEE Internet of Things Journal, 2019, 6(2): 3512-3524. doi: 10.1109/JIOT.2018.2886757
|
[10] |
CHEN L, WU J G, ZHANG J, et al. Dependency-aware computation offloading for mobile edge computing with edge-cloud cooperation[J]. IEEE Transactions on Cloud Computing, 2020, 10(4): 2451-2468.
|
[11] |
MENG J Y, TAN H S, LI X Y, et al. Online deadline-aware task dispatching and scheduling in edge computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(6): 1270-1286. doi: 10.1109/TPDS.2019.2961905
|
[12] |
FANG X L, CAI Z P, TANG W Y, et al. Job scheduling to minimize total completion time on multiple edge servers[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 2245-2255. doi: 10.1109/TNSE.2019.2958281
|
[13] |
CHEN Q L, KUANG Z F, ZHAO L. Multiuser computation offloading and resource allocation for cloud edge heterogeneous network[J]. IEEE Internet of Things Journal, 2022, 9(5): 3799-3811. doi: 10.1109/JIOT.2021.3100117
|
[14] |
NAOURI A, WU H X, NOURI N A, et al. A novel framework for mobile-edge computing by optimizing task offloading[J]. IEEE Internet of Things Journal, 2021, 8(16): 13065-13076. doi: 10.1109/JIOT.2021.3064225
|
[15] |
黄冬晴, 俞黎阳, 陈珏, 等. 面向移动边缘计算的联合计算卸载和资源分配策略研究[J]. 华东师范大学学报(自然科学版), 2021(6): 88-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HDSZ202106010.htm
|
[16] |
DING S Y, LIN D H. Dynamic task allocation for cost-efficient edge cloud computing[C]//IEEE Proceedings of the International Conference on Services Computing (SCC). Beijing: IEEE, 2020: 218-225.
|
[17] |
YUAN H, TANG G M, LI X Y, et al. Online dispatching and fair scheduling of edge computing tasks: a learning-based approach[J]. IEEE Internet of Things Journal, 2021, 8(19): 14985-14998. doi: 10.1109/JIOT.2021.3073034
|
[18] |
WU H M, WOLTER K, JIAO P F, et al. Eedto: an energy-efficient dynamic task offloading algorithm for blockchain-enabled IoT-Edge-cloud orchestrated computing[J]. IEEE Internet of Things Journal, 2021, 8(4): 2163-2176. doi: 10.1109/JIOT.2020.3033521
|
[19] |
吴学文, 廖婧贤. 云边协同系统中基于博弈论的资源分配与任务卸载方案[J]. 系统仿真学报, 2022, 34(7): 1468-1481. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202207009.htm
|
[20] |
DINH T Q, TANG J H, LA Q D, et al. Offloading in mobile edge computing: task allocation and computational frequency scaling[J]. IEEE Transactions on Communications, 2017, 65(8): 3571-3584.
|
[21] |
REISS C, WIKES J, HELLERSTEIN J L. Google cluster-usage traces: format+schema[R]. Google Inc. White Paper, 2011.
|
[22] |
HAN Z H, TAN H S, LI X Y, et al. OnDisc: online latency-sensitive job dispatching and scheduling in heterogeneous edge-clouds[J]. IEEE ACM Transactions on Networking, 2019, 27(6): 2472-2485. doi: 10.1109/TNET.2019.2953806
|
[23] |
MA X, LIN C, ZHANG H, et al. Energy-aware computation offloading of IoT sensors in cloudlet-based mobile edge computing[J]. Sensors, 2018, 18(6): 1945-1950. doi: 10.3390/s18061945
|
[24] |
MA X, LIN C, XIANG X D, et al. Game-theoretic analysis of computation offloading for cloudlet-based mobile cloud computing[C]//ACM International Conference. Mexico: ACM, 2015: 271-278.
|
[25] |
JIA M, CAO J N, LIANG W F. Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks[J]. IEEE Transactions on Cloud Computing, 2017, 5(4): 725-737. doi: 10.1109/TCC.2015.2449834
|
[26] |
TAWALBEH L, JARARWEH Y, ABABNEH F, et al. Large scale cloudlets deployment for efficient mobile cloud computing[J]. Journal of Networks, 2015, 10(1): 70-76.
|