Citation: | XIANG Peng, LIN Bing, YU Hongjie, LIU Dui. Container-driven Scheduling Strategy for Scientific Workflows in Multi-vCPU Environments[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 102-112. DOI: 10.6054/j.jscnun.2023010 |
[1] |
GAO Y, ZHANG S, ZHOU J. A hybrid algorithm for multi-objective scientific workflow scheduling in IaaS cloud[J]. IEEE Access, 2019, 7: 125783-125795. doi: 10.1109/ACCESS.2019.2939294
|
[2] |
PAHL C. Containerization and the paas cloud[J]. IEEE Cloud Computing, 2015, 2(3): 24-31. doi: 10.1109/MCC.2015.51
|
[3] |
NARDELLI M, HOCHREINER C, SCHULTE S. Elastic provisioning of virtual machines for container deployment[C]//Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion. L'Aquila: Association for Computing Machinery, 2017: 5-10.
|
[4] |
WU Q, ISHIKAWA F, ZHU Q, et al. Deadline-constrained cost optimization approaches for workflow scheduling in clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(12): 3401-3412. doi: 10.1109/TPDS.2017.2735400
|
[5] |
陈刚, 徐胜超. 基于蚁群算法的容器云任务低能耗调度方法[J]. 计算机与数字工程, 2022, 50(11): 2467-2472;2501. doi: 10.3969/j.issn.1672-9722.2022.11.021
CHEN G, XU S C. Low energy consumption scheduling method for container cloud tasks based on ant colony algorithm[J]. Computer & Digital Engineering, 2022, 50(11): 2467-2472;2501. doi: 10.3969/j.issn.1672-9722.2022.11.021
|
[6] |
TAN B, MA H, MEI Y. Novel genetic algorithm with dual chromosome representation for resource allocation in container-based clouds[C]//Proceedings of 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). Milan: IEEE, 2019: 452-456.
|
[7] |
ZHU L, HUANG K, HU Y, et al. A self-adapting task scheduling algorithm for container cloud using learning automata[J]. IEEE Access, 2021, 9: 81236-81252. doi: 10.1109/ACCESS.2021.3078773
|
[8] |
TAN B, MA H, MEI Y. A group genetic algorithm for resource allocation in container-based clouds[C]//Proceedings of Evolutionary Computation in Combinatorial Optimization. Cham: Springer International Publishing, 2020: 180-196.
|
[9] |
ZHENG C, THAIN D. Integrating containers into workflows: a case study using makeflow, work queue, and docker[C]//Proceedings of the 8th International Workshop on Virtualization Technologies in Distributed Computing. Portland: Association for Computing Machinery, 2015: 31-38.
|
[10] |
ZHANG W, LIU Y, WANG L, et al. Cost-efficient and latency-aware workflow scheduling policy for container-based systems[C]//Proceedings of 2018 IEEE 24th International Conference on Parallel and Distributed Systems(ICPADS). Singapore: IEEE, 2018: 763-770.
|
[11] |
ZHANG J, ZHOU X, GE T, et al. Joint task scheduling and containerizing for efficient edge computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(8): 2086-2100. doi: 10.1109/TPDS.2021.3059447
|
[12] |
TAGHINEZHAD-NIAR A, PASHAZADEH S, TAHERI J. Workflow scheduling of scientific workflows under simultaneous deadline and budget constraints[J]. Cluster Computing, 2021, 24(4): 3449-3467. doi: 10.1007/s10586-021-03314-3
|
[13] |
LIU L, ZHANG M, BUYYA R, et al. Deadline-constrained coevolutionary genetic algorithm for scientific workflow scheduling in cloud computing[J]. Concurrency and Computation: Practice and Experience, 2017, 29(5): e3942/1-12.
|
[14] |
RAJASEKAR P, PALANICHAMY Y. Scheduling multiple scientific workflows using containers on IaaS cloud[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(7): 7621-7636. doi: 10.1007/s12652-020-02483-0
|
[15] |
PANG S, LI W, HE H, et al. An eda-ga hybrid algorithm for multi-objective task scheduling in cloud computing[J]. IEEE Access, 2019, 7: 146379-146389. doi: 10.1109/ACCESS.2019.2946216
|
[16] |
RODRIGUEZ M A, BUYYA R. Deadline based resource provisioningand scheduling algorithm for scientific workflows on clouds[J]. IEEE Transactions on Cloud Computing, 2014, 2(2): 222-235. doi: 10.1109/TCC.2014.2314655
|
[17] |
WU H, CHEN X, SONG X, et al. Scheduling large-scale scientific workflow on virtual machines with different numbers of vcpus[J]. The Journal of Supercomputing, 2021, 77(1): 679-710. doi: 10.1007/s11227-020-03273-3
|
[18] |
TOPCUOGLU H, HARIRI S, MIN Y W. Performance-effective and low-complexity task scheduling for hetero-geneous computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2002, 13(3): 260-274. doi: 10.1109/71.993206
|
[19] |
KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. Perth: IEEE, 1995: 1942-1948.
|
[20] |
MCCALL J. Genetic algorithms for modelling and optimisation[J]. Journal of Computational and Applied Mathematics, 2005, 184(1): 205-222. doi: 10.1016/j.cam.2004.07.034
|
[21] |
WU Z, NI Z, GU L, et al. A revised discrete particle swarm optimization for cloud workflow scheduling[C]//Proceedings of 2010 International Conference on Computational Intelligence and Security. Nanning: IEEE, 2010: 184-188.
|
[22] |
BHARATHI S, CHERVENAK A, DEELMAN E, et al. Characterization of scientific workflows[C]//Proceedings of 2008 Third Workshop on Workflows in Support of Large- Scale Science. Austin: IEEE, 2008: 1-10.
|
[23] |
GUO W, LIN B, CHEN G, et al. Cost-driven scheduling for deadline-based workflow across multiple clouds[J]. IEEE Transactions on Network and Service Management, 2018, 15(4): 1571-1585. doi: 10.1109/TNSM.2018.2872066
|