Citation: | XU Qingzhen, XIAO Bin. A Study of Shared Parameters Cross-modal Retrieval in Common Spaces[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 88-93. DOI: 10.6054/j.jscnun.2023008 |
[1] |
ZHANG L, WANG L, LIN W. Generalized biased discriminant analysis for content-based image retrieval[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 2011, 42(1): 282-290.
|
[2] |
WANG B, YANG Y, XU X, et al. Adversarial cross-modal retrieval[C]//Proceedings of the 25th ACM International Conference on Multimedia, 2017: 154-162.
|
[3] |
尹奇跃, 黄岩, 张俊格, 等. 基于深度学习的跨模态检索综述[J]. 中国图象图形学报, 2021, 26(6): 1368-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202106007.htm
YIN Q Y, HUANG Y, ZHANG J G, et al. Survey on deep learning based cross-modal retrieval[J]. Journal of Image And Graphigs, 2021, 26(6): 1368-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB202106007.htm
|
[4] |
陈宁, 段友祥, 孙歧峰. 跨模态检索研究文献综述[J]. 计算机科学与探索, 2021, 15(8): 1390-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202108002.htm
CHEN N, DUAN Y X, SUN Q F. Literature review of cross-modal retrieval research[J]. Journal of Frontiers of Computer Science & Technology, 2021, 15(8): 1390-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTS202108002.htm
|
[5] |
HARDOON D R, SZEDMAK S, SHAWE-TAYLOR J. Canonical correlation analysis: an overview with application to learning methods[J]. Neural Computation, 2004, 16(12): 2639-2664. doi: 10.1162/0899766042321814
|
[6] |
RASIWASIA N, MAHAJAN D, MAHADEVAN V, et al. Cluster canonical correlation analysis[C]//Artificial intelligence and statistics. Reykjavik: PMLR, 2014: 823-831.
|
[7] |
ZHANG L, MA B, LI G, et al. Generalized semi-supervised and structured subspace learning for cross-modal retrieval[J]. IEEE Transactions on Multimedia, 2017, 20(1): 128-141.
|
[8] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444. doi: 10.1038/nature14539
|
[9] |
ANDREW G, ARORA R, BILMES J, et al. Deep canonical correlation analysis[C]//Proceedings of the 30th International Conference on Machine Learning. Atlanta: PMLR, 2013: 1247-1255.
|
[10] |
WANG W, YANG X, OOI B C, et al. Effective deep learning-based multi-modal retrieval[J]. The VLDB Journal, 2016, 25(1): 79-101. doi: 10.1007/s00778-015-0391-4
|
[11] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. (2017-01-30)[2021-07-01]. arXiv. https://arxiv.org/abs/1409.1556.
|
[12] |
NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa: ACM, 2010: 807-814.
|
[13] |
FAN E. Extended tanh-function method and its applications to nonlinear equations[J]. Physics Letters A, 2000, 277(4/5): 212-218.
|
[14] |
MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[J]//Advances in Neural Information Processing Systems, 2013, 26: 3111-3119.
|
[15] |
KIM Y, MOSCHITTI A, PANG B, et al. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014: 1746-1751.
|
[16] |
ZHEN L L, HU P, WANG X, et al. Deep supervised cross- modal retrieval[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 10394-10403.
|
[17] |
RASHTCHIAN C, YOUNG P, HODOSH M, et al. Collecting image annotations using amazon's mechanical turk[C]//Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon's Mechanical Turk. Los Angeles: NAACL, 2010: 139-147.
|
[18] |
LIU W, MU C, KUMAR S, et al. Discrete graph hashing[J]. Advances in Neural Information Processing Systems, 2014, 27: 3419-3427.
|
[19] |
RUPNIK J, SHAWE-TAYLOR J. Multi-view canonical correlation analysis[C]//Proceedings of the Conference on Data Mining and Data Warehouses. [S. l: s. n], 2010: 1-4.
|
[20] |
KAN M, SHAN S, ZHANG H, et al. Multi-view discriminant analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(1): 188-194.
|
[21] |
ZHAI X, PENG Y, XIAO J. Learning cross-media joint representation with sparse and semisupervised regularization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 24(6): 965-978.
|
[22] |
WANG B K, YANG Y, XU X. Adversarial cross-modal retrieval[C]//Proceedings of the 2017 ACM on Multimedia Conference. Mountain View: ACM, 2017: 154-162.
|
[23] |
刘爽, 乔晗, 徐清振. 基于批损失的跨模态检索[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 115-121. doi: 10.6054/j.jscnun.2021101
LIU S, QIAO H, XU Q Z. The batch loss for cross-modal retrieval[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(6): 115-121. doi: 10.6054/j.jscnun.2021101
|
[24] |
KINGMA D P, BA J. Adam: a method for stochastic optimization[J/OL]. (2017-01-30)[2021-07-28]. arXiv. https://arxiv.org/abs/1412.6980.
|