Citation: | QIN Yajie, LIU Mengchi, HU Jie, FENG Jiamei. Prediction of Students' Performance Based on Cognitive Diagnosis and XGBoost[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 55-64. DOI: 10.6054/j.jscnun.2023005 |
[1] |
朱天宇, 黄振亚, 陈恩红, 等. 基于认知诊断的个性化试题推荐方法[J]. 计算机学报, 2017, 41(1): 176-191. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201701010.htm
ZHU T Y, HUANG Z Y, CHEN E H, et al. Cognitive diagnosis based personalized question recommendation[J]. Chinese Journal of Computers, 2017, 40(1): 176-191. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201701010.htm
|
[2] |
HUO Y J, XIAO J, NI L M. Towards personalized learning through class contextual factors-based exercise recommendation[C]//Proceedings of the 2018 IEEE 24th International Conference on Parallel and Distributed Systems. Singapore: IEEE, 2018: 85-92.
|
[3] |
熊慧君, 宋一凡, 张鹏, 等. 基于深度自编码器和二次协同过滤的个性化试题推荐方法[J]. 计算机科学, 2019, 46(11A): 172-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2019S2037.htm
XIONG H J, SONG Y F, ZHANG P, et al. Personalized question recommendation based on autoencoder and two-step collaborative filtering[J]. Computer Science, 2019, 46(11A): 172-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2019S2037.htm
|
[4] |
LIU Y P, LIU Q, WU R Z, et al. Collaborative learning team formation: a cognitive modeling perspective[C]//Proceedings of the 21st International Conference on Database Systems for Advanced Applications. Dallas: Springer, 2016: 383-400.
|
[5] |
陈曦, 梅广, 张金金, 等. 融合知识图谱和协同过滤的学生成绩预测方法[J]. 计算机应用, 2019, 40(2): 595-601. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202002050.htm
CHEN X, MEI G, ZHANG J J, et al. Student grade prediction method based on knowledge graph and collaborative filtering[J]. Journal of Computer Applications, 2020, 40(2): 595-601. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202002050.htm
|
[6] |
HUANG Z Y, LIU Q, CHEN Y Y, et al. Learning or forgetting?A dynamic approach for tracking the knowledge proficiency of students[J]. ACM Transactions on Information Systems, 2020, 38(2): 1-33.
|
[7] |
FAN X T. Item response theory and classical test theory: an empirical comparison of their item/person statistics[J]. Educational and Psychological Measurement, 1998, 58(3): 357-381. doi: 10.1177/0013164498058003001
|
[8] |
DE LA TORRE J. DINA model and parameter estimation: a didactic[J]. Journal of Educational and Behavioral Statistics, 2009, 34(1): 115-130. doi: 10.3102/1076998607309474
|
[9] |
LIU Q, WU R Z, CHEN E H, et al. Fuzzy cognitive diagnosis for modelling examinee performance[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9(4): 1-26.
|
[10] |
CHENG S, LIU Q, CHEN E H, et al. DIRT: Deep learning enhanced item response theory for cognitive diagnosis[C]//Proceedings of the 28th ACM International Confe-rence on Information and Knowledge Management. New York: ACM, 2019: 2397-2400.
|
[11] |
WANG F, LIU Q, CHEN E H, et al. Neural cognitive diagnosis for intelligent education systems[C]//Procee-dings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 6153-6161.
|
[12] |
HWANG C S, SU Y C. Unified clustering locality preserving matrix factorization for student performance prediction[J]. IAENG International Journal of Computer Science, 2015, 42(3): 1-9.
|
[13] |
MNIH A, SALAKHUTDINOV R. Probabilistic matrix factorization[C]//Proceedings of the Advances in Neural Information Processing Systems. New York: ACM, 2008: 1257-1264.
|
[14] |
CHEN Y Y, LIU Q, HUANG Z Y, et al. Tracking know-ledge proficiency of students with educational priors[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 989-998.
|
[15] |
CHEN T Q, GUESTRIN C. Xgboost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794.
|
[16] |
HAVELIWALA T H. Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search[J]. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(4): 784-796.
|
[17] |
DIBELLO L V, ROUSSOS L A, STOUT W. 31a review of cognitively diagnostic assessment and a summary of psychometric models[J]. Handbook of Statistics, 2006, 26: 979-1030.
|
[18] |
LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401: 788-791.
|
[19] |
BAKER R, HEFFERNAN N. The 2017 ASSISTments da-tamining competition dataset[DS/OL]. [2021-07-09]. https://sites.google.com/view/assistmentsdatamining/data-set.
|
[20] |
BRADLEY A P. The use of the area under the ROC curve in the evaluation of machine learning algorithms[J]. Pa-ttern Recognition, 1997, 30(7): 1145-1159.
|
1. |
王晓东,李俊志,窦爽,肖继兵,辛宗绪,吴宏生,朱晓东. 高粱抗旱性研究进展. 山东农业科学. 2024(01): 164-173 .
![]() |