Citation: | XIAO Jing, HE Daijun, CAO Yang. A Dual Channel Text Encoder for Solving Math Word Problems[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 36-44. DOI: 10.6054/j.jscnun.2023003 |
[1] |
ZHANG D X, WANG L, BING L M, et al. The gap of semantic parsing: a survey on automatic math word problem solvers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(9): 2287-2305.
|
[2] |
YAN W, LIU X J, SHI S M. Deep neural solver for math word problems[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: Association for Computational Linguistics, 2017: 845-854.
|
[3] |
BOBROW D G. Natural language input for a computer problem-solving system[C]//Semantic Information Processing. Cambridge: MIT Press, 1968: 146-226.
|
[4] |
SLAGLE J R. Experiments with a deductive question-answering program[J]. Communications of the ACM, 1965, 8(12): 792-798. doi: 10.1145/365691.365960
|
[5] |
FLETCHER C R. Understanding and solving arithmetic word problems: a computer simulation[J]. Behavior Research Methods, Instruments & Computers, 1985, 17(5): 565-571.
|
[6] |
BAKMAN Y. Robust understanding of word problems with extraneous information[J]. arXiv, (2007-01-14)[2022-05-20]. https://arxiv.org/abs/math/0701393.
|
[7] |
KUSHMAN N, ARTZI Y, ZETTLEMOYER L, et al. Lear-ning to automatically solve algebra word problems[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore: Association for Computational Linguistics, 2014: 271-281.
|
[8] |
ROY S, DAN R. Unit dependency graph and its application to arithmetic word problem solving[C] // Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017: 3082-3088.
|
[9] |
SHI S M, WANG Y H, LIN C Y, et al. Automatically solving number word problems by semantic parsing and reasoning[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon: Association for Computational Linguistics, 2015: 1132-1142.
|
[10] |
HUANG D Q, SHI S M, LIN C Y, et al. Learning fine-grained expressions to solve math word problems[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: Association for Computational Linguistics, 2017: 805-814.
|
[11] |
WANG L, WANG Y, CAI D, et al. Translating a math word problem to a expression tree[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels: Association for Computational Linguistics, 2018: 1064-1069.
|
[12] |
LIU Q Y, GUAN W, LI S J, et al. Tree-structured decoding for solving math word problems[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019: 2370-2379.
|
[13] |
XIE Z P, SUN S C. A goal-driven tree-structured neural model for math word problems[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: Morgan Kaufmann, 2019: 5299-5305.
|
[14] |
ZHANG J P, WANG L, LEE R K, et al. Graph-to-tree learning for solving math word problems[C]//Procee-dings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle: Association for Computational Linguistics, 2020: 3928-3937.
|
[15] |
CHO K, MERRIENBOER B V, GULCEHRE C, et al. Lear-ning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014: 1724-1734.
|
[16] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
[17] |
王红, 史金钏, 张志伟. 基于注意力机制的LSTM的语义关系抽取[J]. 计算机应用研究, 2018, 35(5): 1417-1420. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201805030.htm
WANG H, SHI J C, ZHANG Z W. Text semantic relation extraction of LSTM based on attention mechanism[J]. Application Research of Computers, 2018, 35(5): 1417-1420. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ201805030.htm
|
[18] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30. Cambridge: MIT Press, 2017: 6000-6010.
|
[19] |
张小川, 戴旭尧, 刘璐, 等. 融合多头自注意力机制的中文短文本分类模型[J]. 计算机应用, 2020, 40(12): 3485-3489. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202012013.htm
ZHANG X C, DAI X Y, LIU L, et al. Chinese short text cla-ssification model with multi-head self-attention mechanism[J]. Journal of Computer Applications, 2020, 40(12): 3485-3489. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY202012013.htm
|
[20] |
LI J R, WANG L, ZHANG J P, et al. Modeling intra-relation in math word problems with different functional multi-head attentions[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence: Association for Computational Linguistics, 2019: 6162-6167.
|
[21] |
LIN X, HUANG Z Y, ZHAO H K, et al. Hms: a hierarchical solver with dependency-enhanced understanding for math word problem[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence. Vancouver: AAAI Press, 2021: 4232-4240.
|