• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LÜ Peng, BI Sipeng, GUAN Zhengqing, CHENG Haibo. Cooperative Governance of Intelligent Society: Research Status and Development Trend[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 19-35. DOI: 10.6054/j.jscnun.2023002
Citation: LÜ Peng, BI Sipeng, GUAN Zhengqing, CHENG Haibo. Cooperative Governance of Intelligent Society: Research Status and Development Trend[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 19-35. DOI: 10.6054/j.jscnun.2023002

Cooperative Governance of Intelligent Society: Research Status and Development Trend

More Information
  • Received Date: November 07, 2022
  • Available Online: April 11, 2023
  • The intelligent society is characterized by the high coupling of man and thing, and the cooperative go-vernance of intelligent society is the core governance mode. It forms the subjective transformation from modern man to intelligent body, and comprehensively expands the social form of human existence attributes such as time, space, biology and society. Collaborative governance of intelligent society is the core governance mode of intelligent society. It is an organic integrated governance mode formed by intelligent society agents fully mobilizing all kinds of wisdom, technology and resources to solve the major problems of intelligent society, such as individual members, operation rules, social institutions, governance mode, policy making, ethical norms and so on. Scholars use a combination of model-driven and data-driven methods to model the intelligent society. The collaborative governance technology under intelligent environment is studied from the mainstream theory of collaborative governance, intelligent society topology, collaborative decision optimization and so on. A series of mechanisms and models of cooperative governance in intelligent society are developed. In recent years, the development of the Internet of Things, artificial intelligence and other technologies has further broadened the theoretical scope of collaborative governance of intelligent society, showing broad application prospects, but at the same time, it also poses new challenges to the model and application of collaborative governance of intelligent society. In this paper, the relevant research status and progress at home and abroad are reviewed and compared from three aspects: the history of human development with the core characteristics of social evolution trend, digital society to intelligent social transition stage; the main model and co-llaborative computing method; collaborative computing in intelligent social actors "human-computer interaction". Condense the key scientific and technological problems existing. The characteristics and possible complementarity of each research branch are analyzed, and the potential future research direction of this direction is finally given.
  • [1]
    孙伟平. 马克思主义唯物史观视域中的"智能社会"[J]. 哲学分析, 2020, 11(6): 4-16;190. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXFX202006002.htm

    SUN W P. Intelligent society from the perspective of marxist historical materialism[J]. Philosophical Analysis, 2020, 11(6): 4-16;190. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXFX202006002.htm
    [2]
    孟凡坤, 吴湘玲. 重新审视"智慧城市": 三个基本研究问题——基于英文文献系统性综述[J]. 公共管理与政策评论, 2022, 11(2): 148-168. doi: 10.3969/j.issn.2095-4026.2022.02.011

    MENG F K, WU X L. Revisiting "Smart City": three basic research questions——based on a systematic review of English literature[J]. Public Administration and Policy Review, 2022, 11(2): 148-168. doi: 10.3969/j.issn.2095-4026.2022.02.011
    [3]
    刘锋. 城市大脑的起源、发展与未来趋势[J]. 人民论坛·学术前沿, 2021(9): 82-95. doi: 10.16619/j.cnki.rmltxsqy.2021.09.010

    LIU F. The origin, development and future trend of city brain[J]. Frontiers, 2021(9): 82-95. doi: 10.16619/j.cnki.rmltxsqy.2021.09.010
    [4]
    高奇琦. 智能革命与国家治理现代化初探[J]. 中国社会科学, 2020(7): 81-102;205-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSHK202007005.htm

    GAO Q Q. A preliminary study of the intelligence revolution and national governance modernization[J]. Social Sciences in China, 2020(7): 81-102;205-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSHK202007005.htm
    [5]
    邱德胜, 沈冬香. 基于智能时代的科学划界标准新探[J]. 河海大学学报(哲学社会科学版), 2021, 23(1): 17-23;105. https://www.cnki.com.cn/Article/CJFDTOTAL-HHZX202101004.htm

    QIU D S, SHEN D X. Study on the demarcation standard of science in the intelligent era[J]. Journal of Hohai University(Philosophy and Social Sciences), 2021, 23(1): 17-23;105. https://www.cnki.com.cn/Article/CJFDTOTAL-HHZX202101004.htm
    [6]
    郑丁灏. 论中国金融数据的协同治理[J]. 经济学家, 2022(12): 76-85.

    ZHENG D H. Research on the collaborative governance of financial data in China[J]. Economist, 2022(12): 76-85.
    [7]
    王小芳, 王磊. "技术利维坦": 人工智能嵌入社会治理的潜在风险与政府应对[J]. 电子政务, 2019(5): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZW201905011.htm
    [8]
    张丙宣. 技术治理的两副面孔[J]. 自然辩证法研究, 2017(9): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRBZ201709005.htm

    ZHANG B X. Two faces of technocracy[J]. Studies in Dialectics of Nature, 2017(9): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRBZ201709005.htm
    [9]
    伏志强, 孙伟平. 科技向"善": 人工智能发展的价值遵循[J]. 甘肃社会科学, 2021(2): 97-103. doi: 10.3969/j.issn.1003-3637.2021.02.014
    [10]
    吕鹏. 人工智能参与社会治理的系统化推进模式[J]. 社会治理, 2020(9): 44-49. doi: 10.16775/j.cnki.10-1285/d.2020.09.008
    [11]
    兰静, 刘文超, 姜浩, 等. 基于SCILAB的多精度算法研究与实现[J]. 计算机工程与科学, 2020, 42(11): 1949-1955. doi: 10.3969/j.issn.1007-130X.2020.11.005

    LAN J, LIU W C, JIANG H, et al. Research and implementation of multi-precision algorithm based on SCILAB[J]. Computer Engineering & Science, 2020, 42(11): 1949-1955. doi: 10.3969/j.issn.1007-130X.2020.11.005
    [12]
    施巍松, 孙辉, 曹杰, 等. 边缘计算: 万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54(5): 907-924. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201705001.htm

    SHI W S, SUN H, CHAO J, et al. Edge computing-an emerging computing model for the internet of everything era[J]. Journal of Computer Research and Development, 2017, 54(5): 907-924. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201705001.htm
    [13]
    陈海明, 崔莉, 谢开斌. 物联网体系结构与实现方法的比较研究[J]. 计算机学报, 2013, 36(1): 168-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201301014.htm

    CHEN H M, CUI L, XIE K B. A comparative study on architectures and implementation methodologies of internet of things[J]. Chinese Journal of Computers, 2013, 36(1): 168-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201301014.htm
    [14]
    李万彬. 云计算技术发展分析及其应用探究[J]. 现代工业经济和信息化, 2020, 10(11): 98-99. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGY202011043.htm

    LI W B. Cloud computing technology development analysis and application[J]. Modern Industrial Economy and Informationization, 2020, 10(11): 98-99. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGY202011043.htm
    [15]
    毛国君, 胡殿军, 谢松燕. 基于分布式数据流的大数据分类模型和算法[J]. 计算机学报, 2017, 40(1): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201701009.htm

    MAO G J, HU D J, XIE S Y. Models and algorithms for classifying big data based on distributed data streams[J]. Chinese Journal of Computers, 2017, 40(1): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201701009.htm
    [16]
    钱文君, 沈晴霓, 吴鹏飞, 等. 大数据计算环境下的隐私保护技术研究进展[J]. 计算机学报, 2022, 45(4): 669-701. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202204001.htm

    QIAN W J, SHEN Q N, WU P F, et al. Research progress on privacy-preserving techniques in big data computing environment[J]. Chinese Journal of Computers, 2022, 45(4): 669-701. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202204001.htm
    [17]
    冯朝胜, 秦志光, 袁丁. 云数据安全存储技术[J]. 计算机学报, 2015, 38(1): 150-163. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201501012.htm

    FENG C S, QIN Z G, YUAN D. Techniques of secure storage for cloud data[J]. Chinese Journal of Computers, 2015, 38(1): 150-163. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201501012.htm
    [18]
    王国胤, 傅顺, 杨洁, 等. 基于多粒度认知的智能计算研究[J]. 计算机学报, 2022, 45(6): 1161-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202206002.htm

    WANG G Y, FU S, YANG J, et al. A review of research on multi-granularity cognition based intelligent computing[J]. Chinese Journal of Computers, 2022, 45(6): 1161-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202206002.htm
    [19]
    曾毅, 张倩, 赵菲菲, 等. 从认知脑的计算模拟到类脑人工智能[J]. 人工智能, 2022(6): 28-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS202206003.htm
    [20]
    逯绍锋, 胡玉龙, 逯跃锋. 保护隐私的集合相似性度量协同计算协议[J]. 计算机技术与发展, 2023, 33(1): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202301021.htm

    LU S F, HU Y L, LU Y F. Privacy preserving set similarity measurement collaborative computing protocol[J]. Computer Technology and Development, 2023, 33(1): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202301021.htm
    [21]
    华中生, 魏江, 周伟华, 等. 网络环境下服务科学与创新管理研究展望[J]. 中国管理科学, 2018, 26(2): 186-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201802019.htm

    HUA Z S, WEI J, ZHOU W H, et al. Service sciences and innovations related research issues in network environment[J]. Chinese Journal of Management Science, 2018, 26(2): 186-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201802019.htm
    [22]
    王海涛, 宋丽华, 向婷婷, 等. 人工智能发展的新方向——人机物三元融合智能[J]. 计算机科学, 2020, 47(S2): 1-5;22. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2020S2001.htm

    WANG H T, SONG L H, XIANG T T, et al. New development direction of artificial intelligence-human cyber physical ternary fusion intelligence[J]. Computer Science, 2020, 47(S2): 1-5;22. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2020S2001.htm
    [23]
    WOOLDRIDGE M. An introduction to multi agent systems[M]. Chichester: John Wiley and Sons, 2002.
    [24]
    肖婉, 季一木, 刘尚东, 等. 传感数据应用于学习分析的研究综述[J]. 现代教育技术, 2022, 32(4): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XJJS202204004.htm

    XIAO W, JI Y M, LIU S D, et al. A research review of the application of sensor data in learning analysis[J]. Modern Educational Technology, 2022, 32(4): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XJJS202204004.htm
    [25]
    陈昫. 责任伦理视角下数字时代机器人养老服务治理[J]. 武汉大学学报(哲学社会科学版), 2022, 75(4): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-WSLD202204016.htm

    CHEN X. Carebots' services governance in the digital era: a study based on the ethics of responsibility[J]. Wuhan University Journal(Philosophy & Social Science), 2022, 75(4): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-WSLD202204016.htm
    [26]
    赵林, 吴双, 徐健, 等. 基于数字孪生的物流装备并行设计与实现[J]. 制造业自动化, 2022, 44(6): 116-119;138. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGY202206030.htm

    ZHAO L, WU S, XU J, et al. Parallel design and implementation of logistics equipment based on digital twin[J]. Manufacturing Automation, 2022, 44(6): 116-119;138. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGY202206030.htm
    [27]
    BUNZ M, JANCIUTE L. Artificial intelligence and the internet of things: UK policy opportunities and challenges[M]. London: University of Westminster Press, 2018.
    [28]
    VAN ROY V. AI watch-national strategies on artificial intelligence: a European perspective in 2019[R]. Luxembourg: Publications Office of the European Union, 2020.
    [29]
    DIRKSEN N, TAKAHASHI S. Artificial intelligence in Japan 2020[M]. Netherlands: Netherlands Enterprise Agency, 2020.
    [30]
    苏竣. 开展人工智能社会实验探索智能社会治理中国道路[J]. 中国行政管理, 2021(12): 21-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXGL202112009.htm
    [31]
    常保国, 戚姝. "人工智能+国家治理": 智能治理模式的内涵建构、生发环境与基本布局[J]. 行政论坛, 2020, 27(2): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XZNT202002003.htm
    [32]
    徐辉. 基于"数字孪生"的智慧城市发展建设思路[J]. 人民论坛·学术前沿, 2020(8): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-RMXS202008010.htm

    XU H. Developing smart cities based on "digital twin"[J]. Frontiers, 2020(8): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-RMXS202008010.htm
    [33]
    贾一苇. 全国一体化国家大数据中心体系研究[J]. 电子政务, 2017(6): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZW201706007.htm
    [34]
    许勇, 黄福寿. 人工智能赋能国家治理: 定位、逻辑与实践[J]. 哈尔滨工业大学学报(社会科学版), 2022, 24(3): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HRBG202203009.htm

    XU Y, HUANG F S. Artificial intelligence enabled national governance: positioning, logic and pratice[J]. Journal of Harbin Institute of Technology(Social Sciences Edition), 2022, 24(3): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HRBG202203009.htm
    [35]
    CATH C, WACHTER S, MITTELSTADT B, et al. Artificial intelligence and the 'good society': the US, EU, and UK approach[J]. Science and Engineering Ethics, 2018, 24(2): 505-528.
    [36]
    FERNANDEZ-ALLER C, DE VELASCO A F, MANJARRES A, et al. An inclusive and sustainable artificial intelligence strategy for europe based on human rights[J]. IEEE Technology and Society Magazine, 2021, 40(1): 46-54.
    [37]
    BELOVA L. Experience of artificial intelligence implementation in Japan[J]. E3S Web of Conferences, 2020, 159: 04035/1-10.
    [38]
    PETRELLA S, MILLER C, COOPER B. Russia's artificial intelligence strategy: the role of state-owned firms[J]. Orbis, 2021, 65(1): 75-100.
    [39]
    代佳欣. 公共治理中的人工智能应用: 一个文献综述[J]. 吉首大学学报(社会科学版), 2021, 42(2): 97-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDX202102011.htm

    DAI J X. Artificial intelligence applications in public go-vernance: a literature review[J]. Journal of Jishou University(Social Sciences), 2021, 42(2): 97-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDX202102011.htm
    [40]
    梅立润. "擅智"与"善智": 人工智能时代中国国家治理的双重任务[J]. 华东理工大学学报(社会科学版), 2019, 34(3): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLS201903011.htm

    MEI L R. "Good at using AI"and"promote AI to be good": the dual task of China's national governance in the era of AI[J]. Journal of East China University of Science and Technology(Social Science Edition), 2019, 34(3): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLS201903011.htm
    [41]
    沈费伟, 诸靖文. 数据赋能: 数字政府治理的运作机理与创新路径[J]. 政治学研究, 2021(1): 104-115;158. https://www.cnki.com.cn/Article/CJFDTOTAL-POLI202101013.htm

    SHEN F W, ZHU J W. Data empowerment: operation mechanism and innovation path of digital government go-vernance in the era of intelligence[J]. CASS Journal of Political Science, 2021(1): 104-115;158. https://www.cnki.com.cn/Article/CJFDTOTAL-POLI202101013.htm
    [42]
    张龙辉, 肖克. 人工智能应用下的特大城市风险治理: 契合、技术变革与路径[J]. 理论月刊, 2020(9): 60-72. https://www.cnki.com.cn/Article/CJFDTOTAL-LLYK202009007.htm
    [43]
    杨述明. 新时代国家治理现代化的智能社会背景[J]. 江汉论坛, 2018(3): 11-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JHLT201803002.htm
    [44]
    戴宁. 新型城镇化进程中的协同治理研究[D]. 长沙: 湖南大学, 2016.

    DAI N. The research on collaborative governance in the process of new urbanization[D]. Changsha: Hunan University, 2016.
    [45]
    NARAIN R, GOLAS A, CURTIS S, et al. Aggregate dynamics for dense crowd simulation[J]. ACM Transactions on Graphics, 2009, 28(5): 1-8.
    [46]
    TREUILLE A, COOPER S, POPOVIĆ Z. Continuum crowds[J]. ACM Transactions on Graphics, 2006, 25(3): 1160-1168.
    [47]
    MORINI F, YERSIN B, MA¨IM J, et al. Real-time scalable motion planning for crowds[C]//Proceedings of the 2007 International Conference on Cyberworlds. Hannover: IEEE, 2007: 144-151.
    [48]
    DONIEC A, MANDIAU R, PIECHOWIAK S, et al. A behavioral multi-agent model for road traffic simulation[J]. Engineering Applications of Artificial Intelligence, 2008, 21(8): 1443-1454.
    [49]
    ORTONY A, CLORE G L, COLLINS A. The cognitive structure of emotions[M]. Cambridge: Cambridge University Press, 2022.
    [50]
    MAO Y, LI Z N, LI Y J, et al. Emotion-based diversity crowd behavior simulation in public emergency[J]. The Visual Computer, 2019, 35(12): 1725-1739.
    [51]
    AHMAD I S, SUN S, BOUFAMA B. Agent-based crowd simulation modeling in a gaming environment[C]//Electronic Theses and Dissertations. Rabat: IEEE, 2018: 1-6.
    [52]
    NAVRÁTILOVÁ K, LEHET D. Model implementation of the algorithm for price-based dynamic parking regulation[C]//2022 Smart City Symposium Prague. Prague: IEEE, 2022: 1-7.
    [53]
    LÜ P, ZHANG Z, LI M D. Big data-drive agent-based modeling of online polarized opinions[J]. Complex & Intelligent Systems, 2021, 7(6): 3259-3276.
    [54]
    YAO Z Z, ZHANG G J, LU D J, et al. Data-driven crowd evacuation: a reinforcement learning method[J]. Neurocomputing, 2019, 366: 314-327.
    [55]
    LU Z R, WANG Y J, LI Y S, et al. Data-driven many-objective crowd worker selection for mobile crowdsourcing in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 531-540.
    [56]
    MENG X F, LU H J, WANG H Y, et al. SG-WRAP: a schema-guided wrapper generator[C]//Proceedings of the 18th International Conference on Data Engineering. San Jose: IEEE, 2002: 331-332.
    [57]
    BUHAN S, ÖZKAZANÇ Y, ÇADIRCI I. Wind pattern reco-gnition and reference wind mast data correlations with NWP for improved wind-electric power forecasts[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 991-1004.
    [58]
    CHEN Z J, WANG H M, SUN H L, et al. Structured pro-babilistic end-to-end learning from crowds[C]//Procee-dings of the 29th International Joint Conference on Artificial Intelligence. Yokohama: Morgan Kaufmann, 2020: 1512-1518
    [59]
    CHEN P P, SUN H L, YANG Y Q, et al. Adversarial learning from crowds[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022, 36(5): 5304-5312.
    [60]
    DAS A, GERVET T, ROMOFF J, et al. Tarmac: Targeted multi-agent communication[C]//Proceedings of the 36th International Conference on Machine Learning. New York: PMLR, 2019: 1538-1546.
    [61]
    HERNANDEZ-LEAL P, KARTAL B, TAYLOR M E. Agent modeling as auxiliary task for deep reinforcement learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. Palo Alto: AAAI Press, 2019, 15(1): 31-37.
    [62]
    PALMER G, TUYLS K, BLOEMBERGEN D, et al. Lenient multi-agent deep reinforcement learning[J]. arXiv, (2018-02-27)[2022-07-31]. https://doi.org/10.48550/arXiv.1707.04402.
    [63]
    YU Z W, XU H, YANG Z, et al. Personalized travel pac-kage with multi-point-of-interest recommendation based on crowdsourced user footprints[J]. IEEE Transactions on Human-Machine Systems, 2015, 46(1): 151-158.
    [64]
    GUO B, DING Y S, YAO L N, et al. The future of false information detection on social media: new perspectives and trends[J]. ACM Computing Surveys, 2020, 53(4): 1-36.
    [65]
    HUI S D, WANG H D, WANG Z H, et al. Knowledge enhanced gan for IoT traffic generation[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 3336-3346.
    [66]
    赫尔曼·哈肯. 高等协同学[M]. 郭治安, 译. 北京: 科学出版社, 1989.
    [67]
    郭烁, 张光. 基于协同理论的市域社会治理协作模型[J]. 社会科学家, 2021(4): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SHKJ202104024.htm
    [68]
    鞠京芮, 孟庆国, 林彤. 社会技术系统理论视角下城市智能治理变革的要素框架与风险应对——以城市大脑为例[J]. 电子政务, 2022(1): 66-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZW202201006.htm
    [69]
    苏竣. 预判人工智能社会风险建设人文智能社会——关于《探路智慧社会: 人工智能赋能社会治理》[J]. 审计观察, 2022(5): 94-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCG202205019.htm
    [70]
    谢君泽. 智能社会治理方法论[J]. 汕头大学学报(人文社会科学版), 2021, 37(8): 85-93;96. https://www.cnki.com.cn/Article/CJFDTOTAL-RWST202108009.htm

    XIE J Z. The methodology of intelligent social governance[J]. Journal of Shantou University(Humanities & Social Sciences Edition), 2021, 37(8): 85-93;96. https://www.cnki.com.cn/Article/CJFDTOTAL-RWST202108009.htm
    [71]
    吕鹏. 智能社会治理的核心逻辑与实现路径[J]. 国家治理, 2021(42): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLGJ202142005.htm
    [72]
    陈思. 算法治理: 智能社会技术异化的风险及应对[J]. 湖北大学学报(哲学社会科学版), 2020, 47(1): 158-165. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZS202001019.htm
    [73]
    王磊. 参差赋权: 人工智能技术赋权的基本形态、潜在风险与应对策略[J]. 自然辩证法通讯, 2021, 43(2): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRBT202102003.htm

    WANG L. Cenci-empowerment: the morphological structure and the risk defense of artificial intelligence[J]. Journal of Dialectics of Nature, 2021, 43(2): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRBT202102003.htm
    [74]
    赵晶旭, 舒成利, 王尧, 等. 人工智能风险的契约观及契约化治理机制研究[J]. 科学学研究, 2021, 39(8): 1364-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-KXYJ202108003.htm

    ZHAO J X, SHU C L, WANG Y, et al. Artificial intelligence risks and their governance mechanisms: a contractual view[J]. Studies in Science of Science, 2021, 39(8): 1364-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-KXYJ202108003.htm
    [75]
    本清松, 彭小兵. 人工智能应用嵌入政府治理: 实践、机制与风险架构——以杭州城市大脑为例[J]. 甘肃行政学院学报, 2020(3): 29-42;125. https://www.cnki.com.cn/Article/CJFDTOTAL-GSXX202003003.htm

    BEN Q S, PENG X B. Government governance embedded in AI applications: practice, mechanism, and risk architecture——a case study of Hangzhou City Brain[J]. Journal of Gansu Administration Institute, 2020(3): 29-42;125. https://www.cnki.com.cn/Article/CJFDTOTAL-GSXX202003003.htm
    [76]
    孙丽文, 李少帅. 人工智能技术产业化创新生态系统风险归因及治理体系研究[J]. 科技进步与对策, 2021, 38(17): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJB202117009.htm

    SUN L W, LI S S. Research on risk attribution and gover-nance system of artificial intelligence technology industrialization innovation ecosystem[J]. Science & Technology Progress and Policy, 2021, 38(17): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJB202117009.htm
    [77]
    贾开, 薛澜. 人工智能伦理问题与安全风险治理的全球比较与中国实践[J]. 公共管理评论, 2021, 3(1): 122-134. https://www.cnki.com.cn/Article/CJFDTOTAL-GOGL202101008.htm

    JIA K, XUE L. Governance of ethical challenges and safety risks of artificial intelligence: global comparisons and practice in China[J]. China Public Administration Review, 2021, 3(1): 122-134. https://www.cnki.com.cn/Article/CJFDTOTAL-GOGL202101008.htm
    [78]
    KENNEDY J, MENDES R. Population structure and particle swarm performance[C]//Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu: IEEE, 2002: 1671-1676.
    [79]
    ZELINKA I, DAVENDRA D, ŠENKEŘÍK R, et al. Do evo-lutionary algorithm dynamics create complex network structures?[J]. Complex Systems, 2011, 20(2): 127-140.
    [80]
    KIRLEY M, STEWART R. An analysis of the effects of population structure on scalable multiobjective optimization problems[C]//Proceedings of the 9th Annual Confe-rence on Genetic and Evolutionary Computation. New York: ACM, 2007: 845-852.
    [81]
    PAYNE J L, EPPSTEIN M J. Emergent mating topologies in spatially structured genetic algorithms[C]//Procee-dings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2006: 207-214.
    [82]
    TINÓS R, YANG S X. A self-organizing random immigrants genetic algorithm for dynamic optimization pro-blems[J]. Genetic Programming and Evolvable Machines, 2007, 8: 255-286.
    [83]
    XU Z, LIU C F, ZHANG P, et al. URIM: utility-oriented role-centric incentive mechanism design for blockchain-based crowdsensing[C]//Database Systems for Advanced Applications. Berlin: Springer, 2021: 358-374.
    [84]
    ZHANG Z H, LU T, LI D S, et al. SANS: setwise attentional neural similarity method for few-shot recommendation[C]// Database Systems for Advanced Applications. Berlin: Springer, 2021: 69-84.
    [85]
    ZHAN Z H, ZHANG J, LI Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 2009, 39(6): 1362-1381.
    [86]
    CHEN W N, ZHANG J, LIN Y, et al. Particle swarm optimization with an aging leader and challengers[J]. IEEE Transactions on Evolutionary Computation, 2012, 17(2): 241-258.
    [87]
    SONG A, CHEN W N, LUO X, et al. Scheduling workflows with composite tasks: a nested particle swarm optimization approach[J]. IEEE Transactions on Services Computing, 2020, 15(2): 1074-1088.
    [88]
    CHEN W N, JIA Y H, ZHAO F, et al. A cooperative co-evolutionary approach to large-scale multisource water distribution network optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 842-857.
    [89]
    CHEN W N, TAN D Z, YANG Q, et al. Ant colony optimization for the control of pollutant spreading on social networks[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 4053-4065.
    [90]
    JIA Y H, CHEN W N, GU T, et al. Distributed cooperative co-evolution with adaptive computing resource allocation for large scale optimization[J]. IEEE Transactions on Evo-lutionary Computation, 2018, 23(2): 188-202.
    [91]
    SONG A, CHEN W N, GONG Y J, et al. A divide-and-conquer evolutionary algorithm for large-scale virtual network embedding[J]. IEEE Transactions on Evolutionary Computation, 2019, 24(3): 566-580.
    [92]
    CHEN W X, WEISE T, YANG Z Y, et al. Large-scale global optimization using cooperative coevolution with vari-able interaction learning[C]//Parallel Problem Solving from Nature, PPSN XI. Berlin: Springer, 2010: 300-309.
    [93]
    YANG Z Y, TANG K, YAO X. Multilevel cooperative coevolution for large scale optimization[C]//2008 IEEE Congress on Evolutionary Computation. Hong Kong: IEEE, 2008: 1663-1670.
    [94]
    BAINBRIDGE S M. Why a board-group decision making in corporate governance[J]. Vanderbilt Law Review, 2002, 55: 1-42.
    [95]
    ASKAY D, METCALF L E, ROSENBERG L, et al. Amplifying the collective intelligence of teams with swarm AI[J]//Collective Intelligence 2019. New York: ACM, 2019: 1-4.
    [96]
    GUNASEKARAN S S, MOSTAFA S A, AHMAD M S. The emergence of collective intelligence[C]//2013 International Conference on Research and Innovation in Information Systems. Zurich: IEEE, 2013: 451-456.
    [97]
    VREDENBURG K, MAO J Y, SMITH P W, et al. A survey of user-centered design practice[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2002: 471-478.
    [98]
    CHIANELLA R, MANDOLFO M, LOLATTO R, et al. Designing for self-awareness: evidence-based explorations of multimodal stress-tracking wearables[C]//Human-Computer Interaction. Berlin: Springer, 2021: 357-371.
    [99]
    MAO J Y, VREDENBURG K, SMITH P W, et al. The state of user-centered design practice[J]. Communications of the ACM, 2005, 48(3): 105-109.
    [100]
    BORNING A, MULLER M. Next steps for value sensitive design[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2012: 1125-1134.
    [101]
    ZIMMERMAN J, FORLIZZI J, EVENSON S. Research through design as a method for interaction design research in HCI[C]//Proceedings of the SIGCHI Confe-rence on Human Factors in Computing Systems. New York: ACM, 2007: 493-502.
    [102]
    ZHU H, YU B, HALFAKER A, et al. Value-sensitive algorithm design: method, case study, and lessons[J]. Proceedings of the ACM on Human-Computer Interaction, 2018, 2: 194/1-23.
    [103]
    BECH-PETERSEN S, MAERKEDAHL L, KROGBAEK M. Participatory design and public galleries, libraries, archives and museums (GLAM) sector[C]//Proceedings of the 14th Participatory Design Conference: Short Papers, Interactive Exhibitions. New York: ACM, 2016: 115-116.
    [104]
    BØDKER S, KYNG M. Participatory design that matters—Facing the big issues[J]. ACM Transactions on Computer-Human Interaction, 2018, 25(1): 1-31.
    [105]
    SHI H B, TSAI S B, LIN X W, et al. How to evaluate smart cities' construction?A comparison of Chinese smart city evaluation methods based on PSF[J]. Sustainability, 2017, 10(1): 37-53.
    [106]
    DUAN Y Q, ZHANG L D, FAN X Y, et al. Smart city oriented ecological sensitivity assessment and service value computing based on intelligent sensing data processing[J]. Computer Communications, 2020, 160: 263-273.
    [107]
    CASTANHO M S, FERREIRA F A F, CARAYANNIS E G, et al. SMART-C: Developing a "Smart City" assessment system using cognitive mapping and the Choquet integral[J]. IEEE Transactions on Engineering Management, 2019, 68(2): 562-573.
    [108]
    XU Z, LIU C F, ZHANG P, et al. WikiChain: a blockchain-based decentralized Wiki Framework[C]//Communications in Computer and Information Science. Singapore: Springer, 2021: 46-57.
    [109]
    YU F Y, ZHANG P, DING X H, et al. Exploring how workspace awareness cues affect distributed meeting outcome[J/OL]. International Journal of Human-Computer Interaction, (2022-04-24)[2023-01-29]. https://doi.org/10.1080/10447318.2022.2064063.
    [110]
    张红春. 政府绩效生成的复杂性与绩效评估因应[J]. 求实, 2021(6): 25-40;108. https://www.cnki.com.cn/Article/CJFDTOTAL-QUAK202106004.htm

    ZHANG H C. The complexity of government performance generation and the response of performance evaluation[J]. Truth Seeking, 2021(6): 25-40;108. https://www.cnki.com.cn/Article/CJFDTOTAL-QUAK202106004.htm
    [111]
    JOSHI S, SAXENA S, GODBOLE T, et al. Developing smart cities: an integrated framework[J]. Procedia Computer Science, 2016, 93: 902-909.
    [112]
    KIM S, ANDERSEN K N, LEE J. Platform government in the era of smart technology[J]. Public Administration Review, 2022, 82(2): 362-368.
    [113]
    CEDILLO-ELIAS E J, LARIOS V M, ORIZAGA-TREJO J A, et al. A cloud platform for smart government ser-vices, using SDN networks: the case of study at Jalisco State in Mexico[C]//Proceedings of the 2019 IEEE International Smart Cities Conference. Casablanca: IEEE, 2019: 372-377.
    [114]
    WILLIAMSON B. The hidden architecture of higher education: building a big data infrastructure for the smarter university'[J]. International Journal of Educational Technology in Higher Education, 2018, 15(1): 1-26.
    [115]
    庄越挺. 城市治理大数据智能关键技术及应用[M]. 杭州: 浙江大学出版社, 2020.
    [116]
    张正清. 人工智能赋能面向2035年科技创新治理体系构建[J]. 中国科技论坛, 2020(11): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKT202011006.htm
    [117]
    邹济, 杨德林, 郭依迪, 等. 被孵企业知识共享治理: 以智能制造孵化器洪泰智造为例[J/OL]. 南开管理评论, (2022-04-12)[2023-01-29]. http://kns.cnki.net/kcms/detail/12.1288.F.20220411.1733.004.html.

    ZOU J, YANG D L, GUO Y D, et al. The governance of knowledge-sharing in incubated enterprise: take Hongtai Zhizao, an intelligent manufacturing incubator, as an example[J]. Nankai Business Review, (2022-04-12)[2023-01-29]. http://kns.cnki.net/kcms/detail/12.1288.F.20220411.1733.004.html.
    [118]
    MARGERUM R D, ROBINSON C J, GENSKOW K. The challenges of collaborative governance: towards a new research agenda[M]//MARGERUM R. The Challenges of Collaboration in Environmental Governance. Cheltenham: Edward Elgar Publishing, 2016: 371-392.
    [119]
    BELL E V, OLIVIER T. Following the paper trail: systematically analyzing outputs to understand collaborative governance evolution[J]. Journal of Public Administration Research and Theory, 2021, 32: 671-684.
    [120]
    MONTORI F, BEDOGNI L, BONONI L. A collaborative internet of things architecture for smart cities and environmental monitoring[J]. IEEE Internet of Things Journal, 2017, 5(2): 592-605.
    [121]
    PATHAK A, AMAZUDDIN M, ABEDIN M J, et al. IoT based smart system to support agricultural parameters: a case study[J]. Procedia Computer Science, 2019, 155: 648-653.
    [122]
    常方乐, 康孟珍, 王秀娟, 等. 平行智能风沙防护治理决策支持系统——塔克拉玛干沙漠公路及其防沙体系[J]. 智能科学与技术学报, 2021, 3(4): 499-506. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJS202104014.htm

    CHANG F L, KANG M Z, WANG X J, et al. Windblown sand control decision-making support system based on parallel intelligence: Taklimakan desert highway and its sand-breaking system[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 499-506. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJS202104014.htm
    [123]
    UPHAM P, VIRKAMÄKI V, KIVIMAA P, et al. Socio-technical transition governance and public opinion: the case of passenger transport in Finland[J]. Journal of Transport Geography, 2015, 46: 210-219.
    [124]
    CREEMERS R. Cyber China: upgrading propaganda, public opinion work and social management for the twenty-first century[J]. Journal of contemporary China, 2017, 26(103): 85-100.
    [125]
    GRVNDER-FAHRER S, SCHLAF A, WIEDEMANN G, et al. Topics and topical phases in German social media communication during a disaster[J]. Natural Language Engineering, 2018, 24(2): 221-264.
    [126]
    NING X, YAO L, BENATALLAH B, et al. Source-aware crisis-relevant tweet identification and key information summarization[J]. ACM Transactions on Internet Technology, 2019, 19(3): 1-20.
    [127]
    梁正. 互联网平台协同治理体系构建——基于全景式治理框架的分析[J]. 人民论坛·学术前沿, 2021(21): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-RMXS202121003.htm

    LIANG Z. Exploring the ways to build a collaborative governance system for internet platforms in the era of digital economy—analysis based on a panoramic gover-nance framework[J]. Frontiers, 2021(21): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-RMXS202121003.htm
    [128]
    魏俊斌. 突发事件网络舆情智能治理的P2DR法治保障模式构建[J]. 情报杂志, 2022, 41(7): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZZ202207016.htm

    WEI J B. Construction of P2DR rule of law guarantee model for intelligent governance of network public opi-nion in emergencies[J]. Journal of Intelligence, 2022, 41(7): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZZ202207016.htm
  • Cited by

    Periodical cited type(1)

    1. 邵梦莎,洪雯雯,刘思乐,张申奥,王思祺,李金源. g-C_3N_4/TiO_2/RGO三元复合材料的制备及催化果糖脱水制5-羟甲基糠醛的研究. 化工科技. 2024(03): 18-25 .

    Other cited types(1)

Catalog

    Article views (469) PDF downloads (210) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return