Citation: | LÜ Peng, BI Sipeng, GUAN Zhengqing, CHENG Haibo. Cooperative Governance of Intelligent Society: Research Status and Development Trend[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(1): 19-35. DOI: 10.6054/j.jscnun.2023002 |
[1] |
孙伟平. 马克思主义唯物史观视域中的"智能社会"[J]. 哲学分析, 2020, 11(6): 4-16;190. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXFX202006002.htm
SUN W P. Intelligent society from the perspective of marxist historical materialism[J]. Philosophical Analysis, 2020, 11(6): 4-16;190. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXFX202006002.htm
|
[2] |
孟凡坤, 吴湘玲. 重新审视"智慧城市": 三个基本研究问题——基于英文文献系统性综述[J]. 公共管理与政策评论, 2022, 11(2): 148-168. doi: 10.3969/j.issn.2095-4026.2022.02.011
MENG F K, WU X L. Revisiting "Smart City": three basic research questions——based on a systematic review of English literature[J]. Public Administration and Policy Review, 2022, 11(2): 148-168. doi: 10.3969/j.issn.2095-4026.2022.02.011
|
[3] |
刘锋. 城市大脑的起源、发展与未来趋势[J]. 人民论坛·学术前沿, 2021(9): 82-95. doi: 10.16619/j.cnki.rmltxsqy.2021.09.010
LIU F. The origin, development and future trend of city brain[J]. Frontiers, 2021(9): 82-95. doi: 10.16619/j.cnki.rmltxsqy.2021.09.010
|
[4] |
高奇琦. 智能革命与国家治理现代化初探[J]. 中国社会科学, 2020(7): 81-102;205-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSHK202007005.htm
GAO Q Q. A preliminary study of the intelligence revolution and national governance modernization[J]. Social Sciences in China, 2020(7): 81-102;205-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSHK202007005.htm
|
[5] |
邱德胜, 沈冬香. 基于智能时代的科学划界标准新探[J]. 河海大学学报(哲学社会科学版), 2021, 23(1): 17-23;105. https://www.cnki.com.cn/Article/CJFDTOTAL-HHZX202101004.htm
QIU D S, SHEN D X. Study on the demarcation standard of science in the intelligent era[J]. Journal of Hohai University(Philosophy and Social Sciences), 2021, 23(1): 17-23;105. https://www.cnki.com.cn/Article/CJFDTOTAL-HHZX202101004.htm
|
[6] |
郑丁灏. 论中国金融数据的协同治理[J]. 经济学家, 2022(12): 76-85.
ZHENG D H. Research on the collaborative governance of financial data in China[J]. Economist, 2022(12): 76-85.
|
[7] |
王小芳, 王磊. "技术利维坦": 人工智能嵌入社会治理的潜在风险与政府应对[J]. 电子政务, 2019(5): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZW201905011.htm
|
[8] |
张丙宣. 技术治理的两副面孔[J]. 自然辩证法研究, 2017(9): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRBZ201709005.htm
ZHANG B X. Two faces of technocracy[J]. Studies in Dialectics of Nature, 2017(9): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRBZ201709005.htm
|
[9] |
伏志强, 孙伟平. 科技向"善": 人工智能发展的价值遵循[J]. 甘肃社会科学, 2021(2): 97-103. doi: 10.3969/j.issn.1003-3637.2021.02.014
|
[10] |
吕鹏. 人工智能参与社会治理的系统化推进模式[J]. 社会治理, 2020(9): 44-49. doi: 10.16775/j.cnki.10-1285/d.2020.09.008
|
[11] |
兰静, 刘文超, 姜浩, 等. 基于SCILAB的多精度算法研究与实现[J]. 计算机工程与科学, 2020, 42(11): 1949-1955. doi: 10.3969/j.issn.1007-130X.2020.11.005
LAN J, LIU W C, JIANG H, et al. Research and implementation of multi-precision algorithm based on SCILAB[J]. Computer Engineering & Science, 2020, 42(11): 1949-1955. doi: 10.3969/j.issn.1007-130X.2020.11.005
|
[12] |
施巍松, 孙辉, 曹杰, 等. 边缘计算: 万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54(5): 907-924. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201705001.htm
SHI W S, SUN H, CHAO J, et al. Edge computing-an emerging computing model for the internet of everything era[J]. Journal of Computer Research and Development, 2017, 54(5): 907-924. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201705001.htm
|
[13] |
陈海明, 崔莉, 谢开斌. 物联网体系结构与实现方法的比较研究[J]. 计算机学报, 2013, 36(1): 168-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201301014.htm
CHEN H M, CUI L, XIE K B. A comparative study on architectures and implementation methodologies of internet of things[J]. Chinese Journal of Computers, 2013, 36(1): 168-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201301014.htm
|
[14] |
李万彬. 云计算技术发展分析及其应用探究[J]. 现代工业经济和信息化, 2020, 10(11): 98-99. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGY202011043.htm
LI W B. Cloud computing technology development analysis and application[J]. Modern Industrial Economy and Informationization, 2020, 10(11): 98-99. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGY202011043.htm
|
[15] |
毛国君, 胡殿军, 谢松燕. 基于分布式数据流的大数据分类模型和算法[J]. 计算机学报, 2017, 40(1): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201701009.htm
MAO G J, HU D J, XIE S Y. Models and algorithms for classifying big data based on distributed data streams[J]. Chinese Journal of Computers, 2017, 40(1): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201701009.htm
|
[16] |
钱文君, 沈晴霓, 吴鹏飞, 等. 大数据计算环境下的隐私保护技术研究进展[J]. 计算机学报, 2022, 45(4): 669-701. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202204001.htm
QIAN W J, SHEN Q N, WU P F, et al. Research progress on privacy-preserving techniques in big data computing environment[J]. Chinese Journal of Computers, 2022, 45(4): 669-701. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202204001.htm
|
[17] |
冯朝胜, 秦志光, 袁丁. 云数据安全存储技术[J]. 计算机学报, 2015, 38(1): 150-163. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201501012.htm
FENG C S, QIN Z G, YUAN D. Techniques of secure storage for cloud data[J]. Chinese Journal of Computers, 2015, 38(1): 150-163. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201501012.htm
|
[18] |
王国胤, 傅顺, 杨洁, 等. 基于多粒度认知的智能计算研究[J]. 计算机学报, 2022, 45(6): 1161-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202206002.htm
WANG G Y, FU S, YANG J, et al. A review of research on multi-granularity cognition based intelligent computing[J]. Chinese Journal of Computers, 2022, 45(6): 1161-1175. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202206002.htm
|
[19] |
曾毅, 张倩, 赵菲菲, 等. 从认知脑的计算模拟到类脑人工智能[J]. 人工智能, 2022(6): 28-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS202206003.htm
|
[20] |
逯绍锋, 胡玉龙, 逯跃锋. 保护隐私的集合相似性度量协同计算协议[J]. 计算机技术与发展, 2023, 33(1): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202301021.htm
LU S F, HU Y L, LU Y F. Privacy preserving set similarity measurement collaborative computing protocol[J]. Computer Technology and Development, 2023, 33(1): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202301021.htm
|
[21] |
华中生, 魏江, 周伟华, 等. 网络环境下服务科学与创新管理研究展望[J]. 中国管理科学, 2018, 26(2): 186-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201802019.htm
HUA Z S, WEI J, ZHOU W H, et al. Service sciences and innovations related research issues in network environment[J]. Chinese Journal of Management Science, 2018, 26(2): 186-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201802019.htm
|
[22] |
王海涛, 宋丽华, 向婷婷, 等. 人工智能发展的新方向——人机物三元融合智能[J]. 计算机科学, 2020, 47(S2): 1-5;22. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2020S2001.htm
WANG H T, SONG L H, XIANG T T, et al. New development direction of artificial intelligence-human cyber physical ternary fusion intelligence[J]. Computer Science, 2020, 47(S2): 1-5;22. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2020S2001.htm
|
[23] |
WOOLDRIDGE M. An introduction to multi agent systems[M]. Chichester: John Wiley and Sons, 2002.
|
[24] |
肖婉, 季一木, 刘尚东, 等. 传感数据应用于学习分析的研究综述[J]. 现代教育技术, 2022, 32(4): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XJJS202204004.htm
XIAO W, JI Y M, LIU S D, et al. A research review of the application of sensor data in learning analysis[J]. Modern Educational Technology, 2022, 32(4): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XJJS202204004.htm
|
[25] |
陈昫. 责任伦理视角下数字时代机器人养老服务治理[J]. 武汉大学学报(哲学社会科学版), 2022, 75(4): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-WSLD202204016.htm
CHEN X. Carebots' services governance in the digital era: a study based on the ethics of responsibility[J]. Wuhan University Journal(Philosophy & Social Science), 2022, 75(4): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-WSLD202204016.htm
|
[26] |
赵林, 吴双, 徐健, 等. 基于数字孪生的物流装备并行设计与实现[J]. 制造业自动化, 2022, 44(6): 116-119;138. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGY202206030.htm
ZHAO L, WU S, XU J, et al. Parallel design and implementation of logistics equipment based on digital twin[J]. Manufacturing Automation, 2022, 44(6): 116-119;138. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGY202206030.htm
|
[27] |
BUNZ M, JANCIUTE L. Artificial intelligence and the internet of things: UK policy opportunities and challenges[M]. London: University of Westminster Press, 2018.
|
[28] |
VAN ROY V. AI watch-national strategies on artificial intelligence: a European perspective in 2019[R]. Luxembourg: Publications Office of the European Union, 2020.
|
[29] |
DIRKSEN N, TAKAHASHI S. Artificial intelligence in Japan 2020[M]. Netherlands: Netherlands Enterprise Agency, 2020.
|
[30] |
苏竣. 开展人工智能社会实验探索智能社会治理中国道路[J]. 中国行政管理, 2021(12): 21-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXGL202112009.htm
|
[31] |
常保国, 戚姝. "人工智能+国家治理": 智能治理模式的内涵建构、生发环境与基本布局[J]. 行政论坛, 2020, 27(2): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-XZNT202002003.htm
|
[32] |
徐辉. 基于"数字孪生"的智慧城市发展建设思路[J]. 人民论坛·学术前沿, 2020(8): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-RMXS202008010.htm
XU H. Developing smart cities based on "digital twin"[J]. Frontiers, 2020(8): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-RMXS202008010.htm
|
[33] |
贾一苇. 全国一体化国家大数据中心体系研究[J]. 电子政务, 2017(6): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZW201706007.htm
|
[34] |
许勇, 黄福寿. 人工智能赋能国家治理: 定位、逻辑与实践[J]. 哈尔滨工业大学学报(社会科学版), 2022, 24(3): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HRBG202203009.htm
XU Y, HUANG F S. Artificial intelligence enabled national governance: positioning, logic and pratice[J]. Journal of Harbin Institute of Technology(Social Sciences Edition), 2022, 24(3): 60-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HRBG202203009.htm
|
[35] |
CATH C, WACHTER S, MITTELSTADT B, et al. Artificial intelligence and the 'good society': the US, EU, and UK approach[J]. Science and Engineering Ethics, 2018, 24(2): 505-528.
|
[36] |
FERNANDEZ-ALLER C, DE VELASCO A F, MANJARRES A, et al. An inclusive and sustainable artificial intelligence strategy for europe based on human rights[J]. IEEE Technology and Society Magazine, 2021, 40(1): 46-54.
|
[37] |
BELOVA L. Experience of artificial intelligence implementation in Japan[J]. E3S Web of Conferences, 2020, 159: 04035/1-10.
|
[38] |
PETRELLA S, MILLER C, COOPER B. Russia's artificial intelligence strategy: the role of state-owned firms[J]. Orbis, 2021, 65(1): 75-100.
|
[39] |
代佳欣. 公共治理中的人工智能应用: 一个文献综述[J]. 吉首大学学报(社会科学版), 2021, 42(2): 97-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDX202102011.htm
DAI J X. Artificial intelligence applications in public go-vernance: a literature review[J]. Journal of Jishou University(Social Sciences), 2021, 42(2): 97-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDX202102011.htm
|
[40] |
梅立润. "擅智"与"善智": 人工智能时代中国国家治理的双重任务[J]. 华东理工大学学报(社会科学版), 2019, 34(3): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLS201903011.htm
MEI L R. "Good at using AI"and"promote AI to be good": the dual task of China's national governance in the era of AI[J]. Journal of East China University of Science and Technology(Social Science Edition), 2019, 34(3): 83-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HDLS201903011.htm
|
[41] |
沈费伟, 诸靖文. 数据赋能: 数字政府治理的运作机理与创新路径[J]. 政治学研究, 2021(1): 104-115;158. https://www.cnki.com.cn/Article/CJFDTOTAL-POLI202101013.htm
SHEN F W, ZHU J W. Data empowerment: operation mechanism and innovation path of digital government go-vernance in the era of intelligence[J]. CASS Journal of Political Science, 2021(1): 104-115;158. https://www.cnki.com.cn/Article/CJFDTOTAL-POLI202101013.htm
|
[42] |
张龙辉, 肖克. 人工智能应用下的特大城市风险治理: 契合、技术变革与路径[J]. 理论月刊, 2020(9): 60-72. https://www.cnki.com.cn/Article/CJFDTOTAL-LLYK202009007.htm
|
[43] |
杨述明. 新时代国家治理现代化的智能社会背景[J]. 江汉论坛, 2018(3): 11-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JHLT201803002.htm
|
[44] |
戴宁. 新型城镇化进程中的协同治理研究[D]. 长沙: 湖南大学, 2016.
DAI N. The research on collaborative governance in the process of new urbanization[D]. Changsha: Hunan University, 2016.
|
[45] |
NARAIN R, GOLAS A, CURTIS S, et al. Aggregate dynamics for dense crowd simulation[J]. ACM Transactions on Graphics, 2009, 28(5): 1-8.
|
[46] |
TREUILLE A, COOPER S, POPOVIĆ Z. Continuum crowds[J]. ACM Transactions on Graphics, 2006, 25(3): 1160-1168.
|
[47] |
MORINI F, YERSIN B, MA¨IM J, et al. Real-time scalable motion planning for crowds[C]//Proceedings of the 2007 International Conference on Cyberworlds. Hannover: IEEE, 2007: 144-151.
|
[48] |
DONIEC A, MANDIAU R, PIECHOWIAK S, et al. A behavioral multi-agent model for road traffic simulation[J]. Engineering Applications of Artificial Intelligence, 2008, 21(8): 1443-1454.
|
[49] |
ORTONY A, CLORE G L, COLLINS A. The cognitive structure of emotions[M]. Cambridge: Cambridge University Press, 2022.
|
[50] |
MAO Y, LI Z N, LI Y J, et al. Emotion-based diversity crowd behavior simulation in public emergency[J]. The Visual Computer, 2019, 35(12): 1725-1739.
|
[51] |
AHMAD I S, SUN S, BOUFAMA B. Agent-based crowd simulation modeling in a gaming environment[C]//Electronic Theses and Dissertations. Rabat: IEEE, 2018: 1-6.
|
[52] |
NAVRÁTILOVÁ K, LEHET D. Model implementation of the algorithm for price-based dynamic parking regulation[C]//2022 Smart City Symposium Prague. Prague: IEEE, 2022: 1-7.
|
[53] |
LÜ P, ZHANG Z, LI M D. Big data-drive agent-based modeling of online polarized opinions[J]. Complex & Intelligent Systems, 2021, 7(6): 3259-3276.
|
[54] |
YAO Z Z, ZHANG G J, LU D J, et al. Data-driven crowd evacuation: a reinforcement learning method[J]. Neurocomputing, 2019, 366: 314-327.
|
[55] |
LU Z R, WANG Y J, LI Y S, et al. Data-driven many-objective crowd worker selection for mobile crowdsourcing in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 531-540.
|
[56] |
MENG X F, LU H J, WANG H Y, et al. SG-WRAP: a schema-guided wrapper generator[C]//Proceedings of the 18th International Conference on Data Engineering. San Jose: IEEE, 2002: 331-332.
|
[57] |
BUHAN S, ÖZKAZANÇ Y, ÇADIRCI I. Wind pattern reco-gnition and reference wind mast data correlations with NWP for improved wind-electric power forecasts[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 991-1004.
|
[58] |
CHEN Z J, WANG H M, SUN H L, et al. Structured pro-babilistic end-to-end learning from crowds[C]//Procee-dings of the 29th International Joint Conference on Artificial Intelligence. Yokohama: Morgan Kaufmann, 2020: 1512-1518
|
[59] |
CHEN P P, SUN H L, YANG Y Q, et al. Adversarial learning from crowds[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022, 36(5): 5304-5312.
|
[60] |
DAS A, GERVET T, ROMOFF J, et al. Tarmac: Targeted multi-agent communication[C]//Proceedings of the 36th International Conference on Machine Learning. New York: PMLR, 2019: 1538-1546.
|
[61] |
HERNANDEZ-LEAL P, KARTAL B, TAYLOR M E. Agent modeling as auxiliary task for deep reinforcement learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. Palo Alto: AAAI Press, 2019, 15(1): 31-37.
|
[62] |
PALMER G, TUYLS K, BLOEMBERGEN D, et al. Lenient multi-agent deep reinforcement learning[J]. arXiv, (2018-02-27)[2022-07-31]. https://doi.org/10.48550/arXiv.1707.04402.
|
[63] |
YU Z W, XU H, YANG Z, et al. Personalized travel pac-kage with multi-point-of-interest recommendation based on crowdsourced user footprints[J]. IEEE Transactions on Human-Machine Systems, 2015, 46(1): 151-158.
|
[64] |
GUO B, DING Y S, YAO L N, et al. The future of false information detection on social media: new perspectives and trends[J]. ACM Computing Surveys, 2020, 53(4): 1-36.
|
[65] |
HUI S D, WANG H D, WANG Z H, et al. Knowledge enhanced gan for IoT traffic generation[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 3336-3346.
|
[66] |
赫尔曼·哈肯. 高等协同学[M]. 郭治安, 译. 北京: 科学出版社, 1989.
|
[67] |
郭烁, 张光. 基于协同理论的市域社会治理协作模型[J]. 社会科学家, 2021(4): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SHKJ202104024.htm
|
[68] |
鞠京芮, 孟庆国, 林彤. 社会技术系统理论视角下城市智能治理变革的要素框架与风险应对——以城市大脑为例[J]. 电子政务, 2022(1): 66-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZW202201006.htm
|
[69] |
苏竣. 预判人工智能社会风险建设人文智能社会——关于《探路智慧社会: 人工智能赋能社会治理》[J]. 审计观察, 2022(5): 94-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCG202205019.htm
|
[70] |
谢君泽. 智能社会治理方法论[J]. 汕头大学学报(人文社会科学版), 2021, 37(8): 85-93;96. https://www.cnki.com.cn/Article/CJFDTOTAL-RWST202108009.htm
XIE J Z. The methodology of intelligent social governance[J]. Journal of Shantou University(Humanities & Social Sciences Edition), 2021, 37(8): 85-93;96. https://www.cnki.com.cn/Article/CJFDTOTAL-RWST202108009.htm
|
[71] |
吕鹏. 智能社会治理的核心逻辑与实现路径[J]. 国家治理, 2021(42): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLGJ202142005.htm
|
[72] |
陈思. 算法治理: 智能社会技术异化的风险及应对[J]. 湖北大学学报(哲学社会科学版), 2020, 47(1): 158-165. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZS202001019.htm
|
[73] |
王磊. 参差赋权: 人工智能技术赋权的基本形态、潜在风险与应对策略[J]. 自然辩证法通讯, 2021, 43(2): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRBT202102003.htm
WANG L. Cenci-empowerment: the morphological structure and the risk defense of artificial intelligence[J]. Journal of Dialectics of Nature, 2021, 43(2): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRBT202102003.htm
|
[74] |
赵晶旭, 舒成利, 王尧, 等. 人工智能风险的契约观及契约化治理机制研究[J]. 科学学研究, 2021, 39(8): 1364-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-KXYJ202108003.htm
ZHAO J X, SHU C L, WANG Y, et al. Artificial intelligence risks and their governance mechanisms: a contractual view[J]. Studies in Science of Science, 2021, 39(8): 1364-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-KXYJ202108003.htm
|
[75] |
本清松, 彭小兵. 人工智能应用嵌入政府治理: 实践、机制与风险架构——以杭州城市大脑为例[J]. 甘肃行政学院学报, 2020(3): 29-42;125. https://www.cnki.com.cn/Article/CJFDTOTAL-GSXX202003003.htm
BEN Q S, PENG X B. Government governance embedded in AI applications: practice, mechanism, and risk architecture——a case study of Hangzhou City Brain[J]. Journal of Gansu Administration Institute, 2020(3): 29-42;125. https://www.cnki.com.cn/Article/CJFDTOTAL-GSXX202003003.htm
|
[76] |
孙丽文, 李少帅. 人工智能技术产业化创新生态系统风险归因及治理体系研究[J]. 科技进步与对策, 2021, 38(17): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJB202117009.htm
SUN L W, LI S S. Research on risk attribution and gover-nance system of artificial intelligence technology industrialization innovation ecosystem[J]. Science & Technology Progress and Policy, 2021, 38(17): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJB202117009.htm
|
[77] |
贾开, 薛澜. 人工智能伦理问题与安全风险治理的全球比较与中国实践[J]. 公共管理评论, 2021, 3(1): 122-134. https://www.cnki.com.cn/Article/CJFDTOTAL-GOGL202101008.htm
JIA K, XUE L. Governance of ethical challenges and safety risks of artificial intelligence: global comparisons and practice in China[J]. China Public Administration Review, 2021, 3(1): 122-134. https://www.cnki.com.cn/Article/CJFDTOTAL-GOGL202101008.htm
|
[78] |
KENNEDY J, MENDES R. Population structure and particle swarm performance[C]//Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu: IEEE, 2002: 1671-1676.
|
[79] |
ZELINKA I, DAVENDRA D, ŠENKEŘÍK R, et al. Do evo-lutionary algorithm dynamics create complex network structures?[J]. Complex Systems, 2011, 20(2): 127-140.
|
[80] |
KIRLEY M, STEWART R. An analysis of the effects of population structure on scalable multiobjective optimization problems[C]//Proceedings of the 9th Annual Confe-rence on Genetic and Evolutionary Computation. New York: ACM, 2007: 845-852.
|
[81] |
PAYNE J L, EPPSTEIN M J. Emergent mating topologies in spatially structured genetic algorithms[C]//Procee-dings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2006: 207-214.
|
[82] |
TINÓS R, YANG S X. A self-organizing random immigrants genetic algorithm for dynamic optimization pro-blems[J]. Genetic Programming and Evolvable Machines, 2007, 8: 255-286.
|
[83] |
XU Z, LIU C F, ZHANG P, et al. URIM: utility-oriented role-centric incentive mechanism design for blockchain-based crowdsensing[C]//Database Systems for Advanced Applications. Berlin: Springer, 2021: 358-374.
|
[84] |
ZHANG Z H, LU T, LI D S, et al. SANS: setwise attentional neural similarity method for few-shot recommendation[C]// Database Systems for Advanced Applications. Berlin: Springer, 2021: 69-84.
|
[85] |
ZHAN Z H, ZHANG J, LI Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 2009, 39(6): 1362-1381.
|
[86] |
CHEN W N, ZHANG J, LIN Y, et al. Particle swarm optimization with an aging leader and challengers[J]. IEEE Transactions on Evolutionary Computation, 2012, 17(2): 241-258.
|
[87] |
SONG A, CHEN W N, LUO X, et al. Scheduling workflows with composite tasks: a nested particle swarm optimization approach[J]. IEEE Transactions on Services Computing, 2020, 15(2): 1074-1088.
|
[88] |
CHEN W N, JIA Y H, ZHAO F, et al. A cooperative co-evolutionary approach to large-scale multisource water distribution network optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 842-857.
|
[89] |
CHEN W N, TAN D Z, YANG Q, et al. Ant colony optimization for the control of pollutant spreading on social networks[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 4053-4065.
|
[90] |
JIA Y H, CHEN W N, GU T, et al. Distributed cooperative co-evolution with adaptive computing resource allocation for large scale optimization[J]. IEEE Transactions on Evo-lutionary Computation, 2018, 23(2): 188-202.
|
[91] |
SONG A, CHEN W N, GONG Y J, et al. A divide-and-conquer evolutionary algorithm for large-scale virtual network embedding[J]. IEEE Transactions on Evolutionary Computation, 2019, 24(3): 566-580.
|
[92] |
CHEN W X, WEISE T, YANG Z Y, et al. Large-scale global optimization using cooperative coevolution with vari-able interaction learning[C]//Parallel Problem Solving from Nature, PPSN XI. Berlin: Springer, 2010: 300-309.
|
[93] |
YANG Z Y, TANG K, YAO X. Multilevel cooperative coevolution for large scale optimization[C]//2008 IEEE Congress on Evolutionary Computation. Hong Kong: IEEE, 2008: 1663-1670.
|
[94] |
BAINBRIDGE S M. Why a board-group decision making in corporate governance[J]. Vanderbilt Law Review, 2002, 55: 1-42.
|
[95] |
ASKAY D, METCALF L E, ROSENBERG L, et al. Amplifying the collective intelligence of teams with swarm AI[J]//Collective Intelligence 2019. New York: ACM, 2019: 1-4.
|
[96] |
GUNASEKARAN S S, MOSTAFA S A, AHMAD M S. The emergence of collective intelligence[C]//2013 International Conference on Research and Innovation in Information Systems. Zurich: IEEE, 2013: 451-456.
|
[97] |
VREDENBURG K, MAO J Y, SMITH P W, et al. A survey of user-centered design practice[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2002: 471-478.
|
[98] |
CHIANELLA R, MANDOLFO M, LOLATTO R, et al. Designing for self-awareness: evidence-based explorations of multimodal stress-tracking wearables[C]//Human-Computer Interaction. Berlin: Springer, 2021: 357-371.
|
[99] |
MAO J Y, VREDENBURG K, SMITH P W, et al. The state of user-centered design practice[J]. Communications of the ACM, 2005, 48(3): 105-109.
|
[100] |
BORNING A, MULLER M. Next steps for value sensitive design[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2012: 1125-1134.
|
[101] |
ZIMMERMAN J, FORLIZZI J, EVENSON S. Research through design as a method for interaction design research in HCI[C]//Proceedings of the SIGCHI Confe-rence on Human Factors in Computing Systems. New York: ACM, 2007: 493-502.
|
[102] |
ZHU H, YU B, HALFAKER A, et al. Value-sensitive algorithm design: method, case study, and lessons[J]. Proceedings of the ACM on Human-Computer Interaction, 2018, 2: 194/1-23.
|
[103] |
BECH-PETERSEN S, MAERKEDAHL L, KROGBAEK M. Participatory design and public galleries, libraries, archives and museums (GLAM) sector[C]//Proceedings of the 14th Participatory Design Conference: Short Papers, Interactive Exhibitions. New York: ACM, 2016: 115-116.
|
[104] |
BØDKER S, KYNG M. Participatory design that matters—Facing the big issues[J]. ACM Transactions on Computer-Human Interaction, 2018, 25(1): 1-31.
|
[105] |
SHI H B, TSAI S B, LIN X W, et al. How to evaluate smart cities' construction?A comparison of Chinese smart city evaluation methods based on PSF[J]. Sustainability, 2017, 10(1): 37-53.
|
[106] |
DUAN Y Q, ZHANG L D, FAN X Y, et al. Smart city oriented ecological sensitivity assessment and service value computing based on intelligent sensing data processing[J]. Computer Communications, 2020, 160: 263-273.
|
[107] |
CASTANHO M S, FERREIRA F A F, CARAYANNIS E G, et al. SMART-C: Developing a "Smart City" assessment system using cognitive mapping and the Choquet integral[J]. IEEE Transactions on Engineering Management, 2019, 68(2): 562-573.
|
[108] |
XU Z, LIU C F, ZHANG P, et al. WikiChain: a blockchain-based decentralized Wiki Framework[C]//Communications in Computer and Information Science. Singapore: Springer, 2021: 46-57.
|
[109] |
YU F Y, ZHANG P, DING X H, et al. Exploring how workspace awareness cues affect distributed meeting outcome[J/OL]. International Journal of Human-Computer Interaction, (2022-04-24)[2023-01-29]. https://doi.org/10.1080/10447318.2022.2064063.
|
[110] |
张红春. 政府绩效生成的复杂性与绩效评估因应[J]. 求实, 2021(6): 25-40;108. https://www.cnki.com.cn/Article/CJFDTOTAL-QUAK202106004.htm
ZHANG H C. The complexity of government performance generation and the response of performance evaluation[J]. Truth Seeking, 2021(6): 25-40;108. https://www.cnki.com.cn/Article/CJFDTOTAL-QUAK202106004.htm
|
[111] |
JOSHI S, SAXENA S, GODBOLE T, et al. Developing smart cities: an integrated framework[J]. Procedia Computer Science, 2016, 93: 902-909.
|
[112] |
KIM S, ANDERSEN K N, LEE J. Platform government in the era of smart technology[J]. Public Administration Review, 2022, 82(2): 362-368.
|
[113] |
CEDILLO-ELIAS E J, LARIOS V M, ORIZAGA-TREJO J A, et al. A cloud platform for smart government ser-vices, using SDN networks: the case of study at Jalisco State in Mexico[C]//Proceedings of the 2019 IEEE International Smart Cities Conference. Casablanca: IEEE, 2019: 372-377.
|
[114] |
WILLIAMSON B. The hidden architecture of higher education: building a big data infrastructure for the smarter university'[J]. International Journal of Educational Technology in Higher Education, 2018, 15(1): 1-26.
|
[115] |
庄越挺. 城市治理大数据智能关键技术及应用[M]. 杭州: 浙江大学出版社, 2020.
|
[116] |
张正清. 人工智能赋能面向2035年科技创新治理体系构建[J]. 中国科技论坛, 2020(11): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKT202011006.htm
|
[117] |
邹济, 杨德林, 郭依迪, 等. 被孵企业知识共享治理: 以智能制造孵化器洪泰智造为例[J/OL]. 南开管理评论, (2022-04-12)[2023-01-29]. http://kns.cnki.net/kcms/detail/12.1288.F.20220411.1733.004.html.
ZOU J, YANG D L, GUO Y D, et al. The governance of knowledge-sharing in incubated enterprise: take Hongtai Zhizao, an intelligent manufacturing incubator, as an example[J]. Nankai Business Review, (2022-04-12)[2023-01-29]. http://kns.cnki.net/kcms/detail/12.1288.F.20220411.1733.004.html.
|
[118] |
MARGERUM R D, ROBINSON C J, GENSKOW K. The challenges of collaborative governance: towards a new research agenda[M]//MARGERUM R. The Challenges of Collaboration in Environmental Governance. Cheltenham: Edward Elgar Publishing, 2016: 371-392.
|
[119] |
BELL E V, OLIVIER T. Following the paper trail: systematically analyzing outputs to understand collaborative governance evolution[J]. Journal of Public Administration Research and Theory, 2021, 32: 671-684.
|
[120] |
MONTORI F, BEDOGNI L, BONONI L. A collaborative internet of things architecture for smart cities and environmental monitoring[J]. IEEE Internet of Things Journal, 2017, 5(2): 592-605.
|
[121] |
PATHAK A, AMAZUDDIN M, ABEDIN M J, et al. IoT based smart system to support agricultural parameters: a case study[J]. Procedia Computer Science, 2019, 155: 648-653.
|
[122] |
常方乐, 康孟珍, 王秀娟, 等. 平行智能风沙防护治理决策支持系统——塔克拉玛干沙漠公路及其防沙体系[J]. 智能科学与技术学报, 2021, 3(4): 499-506. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJS202104014.htm
CHANG F L, KANG M Z, WANG X J, et al. Windblown sand control decision-making support system based on parallel intelligence: Taklimakan desert highway and its sand-breaking system[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(4): 499-506. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJS202104014.htm
|
[123] |
UPHAM P, VIRKAMÄKI V, KIVIMAA P, et al. Socio-technical transition governance and public opinion: the case of passenger transport in Finland[J]. Journal of Transport Geography, 2015, 46: 210-219.
|
[124] |
CREEMERS R. Cyber China: upgrading propaganda, public opinion work and social management for the twenty-first century[J]. Journal of contemporary China, 2017, 26(103): 85-100.
|
[125] |
GRVNDER-FAHRER S, SCHLAF A, WIEDEMANN G, et al. Topics and topical phases in German social media communication during a disaster[J]. Natural Language Engineering, 2018, 24(2): 221-264.
|
[126] |
NING X, YAO L, BENATALLAH B, et al. Source-aware crisis-relevant tweet identification and key information summarization[J]. ACM Transactions on Internet Technology, 2019, 19(3): 1-20.
|
[127] |
梁正. 互联网平台协同治理体系构建——基于全景式治理框架的分析[J]. 人民论坛·学术前沿, 2021(21): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-RMXS202121003.htm
LIANG Z. Exploring the ways to build a collaborative governance system for internet platforms in the era of digital economy—analysis based on a panoramic gover-nance framework[J]. Frontiers, 2021(21): 26-36. https://www.cnki.com.cn/Article/CJFDTOTAL-RMXS202121003.htm
|
[128] |
魏俊斌. 突发事件网络舆情智能治理的P2DR法治保障模式构建[J]. 情报杂志, 2022, 41(7): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZZ202207016.htm
WEI J B. Construction of P2DR rule of law guarantee model for intelligent governance of network public opi-nion in emergencies[J]. Journal of Intelligence, 2022, 41(7): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-QBZZ202207016.htm
|
1. |
邵梦莎,洪雯雯,刘思乐,张申奥,王思祺,李金源. g-C_3N_4/TiO_2/RGO三元复合材料的制备及催化果糖脱水制5-羟甲基糠醛的研究. 化工科技. 2024(03): 18-25 .
![]() |