• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
GUO Jianwei, OU Yiwei, MA Junxian, OU Huaxin, WANG Yuehui. Thermal Decomposition Behavior of Castor Oil-based Polyurethane Resin[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 28-36. DOI: 10.6054/j.jscnun.2022082
Citation: GUO Jianwei, OU Yiwei, MA Junxian, OU Huaxin, WANG Yuehui. Thermal Decomposition Behavior of Castor Oil-based Polyurethane Resin[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 28-36. DOI: 10.6054/j.jscnun.2022082

Thermal Decomposition Behavior of Castor Oil-based Polyurethane Resin

More Information
  • Received Date: November 07, 2021
  • Available Online: February 13, 2023
  • The thermogravimetric analyzer (TGA), thermogravimetric analysis-Fourier transform infrared spectrometer (TG-FTIR) and thermal pyrolysis gas chromatography/mass spectrometry (PY-GC/MS) were used for the test and characterization of the thermal degradation process in the castor oil-based polyurethane resin, different non-isothermal kinetic methods were used to calculate the kinetic parameters of the resin and infer the thermal degradation mechanism of the resin. The results show that the castor oil-based polyurethane resin starts to degrade at 285 ℃ (5% mass loss), and the degradation is almost complete around 450 ℃ (95% mass loss). The thermal degradation process (take a heating rate of 10 ℃/min as an example) is divided into three stages: the first stage occurs at 285.23~345.25 ℃, the mass loss is 60%, mainly due to the rupture of the resin urethane bond and parts of the ester group decomposed into CO2; the second stage starts at 345.25~389.17 ℃ with 20% mass loss, the carbamate segment is degraded into amines, CO2 and small molecular organics containing CH3 or -CH2-; the third stage occurs at 389.17~450.00 ℃, the mass loss is 20%, mainly because the small molecular organic matter is further degraded into CO2 and N-containing volatile gas. The degradation mechanism may have two ways: the first is the cleavage of the carbon-oxygen bond on the left side of the ester group -O- in the main bond carbamate structure to form isocyanates and alcohols. The isocyanates are partially split into amines, carbon dioxide, etc., and the alcohol part is dehydrated to generate aldehydes or to synthesize olefins, enoic acids; the second is the cleavage of the -O- right carbon-oxygen bond in the carbamate structure to generate carbamic acid and alcohols. The carbamate partially cracked to generate primary amines and carbon dioxide, and alcohols partially cleft into aldehydes and olefins, etc.
  • [1]
    IBRAHIM S, AHMAD A, MOHAMED N S. Comprehensive studies on polymer electrolyte and dye-sensitized solar cell developed using castor oil-based polyurethane[J]. Journal of Solid State Electrochemistry, 2018, 22(2): 461-470. doi: 10.1007/s10008-017-3775-0
    [2]
    XIE F W, ZHANG T L, BRYANT P, et al. Degradation and stabilization of polyurethane elastomers[J]. Progress in Polymer Science, 2019, 90: 211-268. doi: 10.1016/j.progpolymsci.2018.12.003
    [3]
    MUTLU H, MAR M. Castor oil as a renewable resource for the chemical industry[J]. European Journal of Lipid Science and Technology, 2010, 112: 10-30. doi: 10.1002/ejlt.200900138
    [4]
    LIU J W, HE J, XUE R, et al. Biodegradation and up-cycling of polyurethanes: progress, challenges, and prospects[J]. Biotechnology Advances, 2021, 48: 107-730. http://www.sciencedirect.com/science/article/pii/S0734975021000367
    [5]
    MAGNIN A, POLLET E, PHALIP E, et al. Evaluation of biological degradation of polyurethanes[J]. Biotechnology Advances, 2020, 39: 107-457.
    [6]
    ZHANG L, DING H. Study on the properties, morphology, and applications of castor oil polyurethane-poly(methyl methacrylate) IPNs[J]. Journal of Applied Polymer Science, 1997, 64: 1393-1401. doi: 10.1002/(SICI)1097-4628(19970516)64:7<1393::AID-APP19>3.0.CO;2-Y
    [7]
    OPREA S. Synthesis and properties of polyurethane elastomers with castor oil as crosslinker[J]. Journal of the American Oil Chemists' Society, 2010, 87(3): 313-320. doi: 10.1007/s11746-009-1501-5
    [8]
    ZHANG J, YAO M, CHEN J, et al. Synthesis and properties of polyurethane elastomers based on renewable castor oil polyols[J]. Journal of Applied Polymer Science, 2019, 136: 1-14.
    [9]
    MALIK M, KAUR R. Mechanical and thermal properties of castor oil-based polyurethane adhesive: effect of TiO2 filler[J]. Advances in Polymer Technology, 2018, 37: 24-30. doi: 10.1002/adv.21637
    [10]
    BISWAL S, SATAPATHY J, ACHARY P, et al. The synthesis and FTIR, Kinetics and TG/DTG/DTA study of inter penetrating polymer networks (IPNs) derived from polyurethanes of glycerol modified castor oil and cardanol based dyes[J]. Journal of Polymers and the Environment, 2012, 20(3): 788-793. doi: 10.1007/s10924-012-0474-x
    [11]
    HABLOT E, ZHENG D, BOUQUEY M, et al. Polyurethanes based on castor oil: kinetics, chemical, mechanical and thermal properties[J]. Macromolecular Materials and Engineering, 2008, 293: 922-929. doi: 10.1002/mame.200800185
    [12]
    PELUFO D I, NETO S C, GOBOO R C B, et al. Kinetic study of the thermal decomposition of castor oil based polyurethane[J]. Journal of Polymer Research, 2020, 27(6): 1-12.
    [13]
    YIN T, COCKS D, HOFSTETTER W. Polaronic effects in one- and two-band quantum systems[J]. Physical Review A, 2015, 92(6): 063635/1-20. doi: 10.1103/PhysRevA.92.063635
    [14]
    MONNIKA, NEHA M, VIMAL K. Generalized kinetics for thermal degradation and melt rheology for poly (lactic acid)/poly (butylene succinate)/functionalized chitosan based reactive nanobiocomposite[J]. International Journal of Biological Macromolecules, 2019, 141: 831-842. doi: 10.1016/j.ijbiomac.2019.09.058
    [15]
    PARCHETA P, KOLTSOV I, DATTA J. Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis[J]. Polymer Degradation and Stability, 2018, 151: 90-99. doi: 10.1016/j.polymdegradstab.2018.03.002
    [16]
    OTHMAN M, KHAN A, AHMAD Z, et al. Kinetic investigation and lifetime prediction of Cs-NIPAM-MBA-based thermo-responsive hydrogels[J]. Carbohydrate Polymers, 2016, 136: 1182-1193.
    [17]
    骆强, 曲芳, 姚志鹏, 等. 典型航空电缆的热解动力学研究[J]. 华南师范大学学报(自然科学版), 2021, 53(5): 30-36. doi: 10.6054/j.jscnun.2021072

    LUO Q, QU F, YAO Z P, et al. Study on pyrolysis kinetics of typical aviation cable[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(5): 30-36. doi: 10.6054/j.jscnun.2021072
    [18]
    VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1): 1-19. https://www.sciencedirect.com/science/article/pii/S0040603111002152
    [19]
    ABOULKAS A, HARFI K E, BOUADILII A E. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms[J]. Energy Conversion and Management, 2009, 51(7): 1363-1369. https://www.sciencedirect.com/science/article/pii/S0196890409005238
    [20]
    FENG Y Z, WANG B, WANG F F, et al. Thermal degradation mechanism and kinetics of polycarbonate/silica nanocomposites[J]. Polymer Degradation and Stability, 2014, 107: 129-138. https://www.sciencedirect.com/science/article/pii/S0141391014001979
    [21]
    CHAUDHARY R G, JUNEJA H D, PAGADALA R, et al. Synthesis, characterization and thermal degradation behavior of some coordination polymers by using TG-DTG and DTA techniques[J]. Journal of Saudi Chemical Society, 2015, 19(4): 442-453. https://www.sciencedirect.com/science/article/pii/S1319610314000866
    [22]
    张立飞, 柳军旺, 马成国, 等. 石墨/聚丙烯复合材料的热降解过程与燃烧行为[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 17-22. doi: 10.6054/j.jscnun.2019120

    ZHANG L F, LIU J W, MA C G, et al. Thermal degradation process and combustion behavior of graphite/polypropylene composites[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(1): 17-22. doi: 10.6054/j.jscnun.2019120
    [23]
    KAMENO N, YAMADA S, AMIMOTO T, et al. Thermal degradation of poly(lactic acid) oligomer: reaction mechanism and multistep kinetic behavior[J]. Polymer Degradation and Stability, 2016, 134: 284-295.
    [24]
    QIAO Y Y, WANG B, ZONG P J, et al. Thermal beha-vior, kinetics and fast pyrolysis characteristics of palm oil: analytical TG-FTIR and Py-GC/MS study[J]. Energy Conversion and Management, 2019, 199: 1-10.
    [25]
    LORIA M I, HERRERA W, CAUICH J V, et al. A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone)[J]. Journal of Thermal Analysis and Calorimetry, 2011, 104(2): 737-742. doi: 10.1007/s10973-010-1061-9
    [26]
    LV S, ZHANG Y, TAN H. Thermal and thermo-oxidative degradation kinetics and characteristics of poly(lactic acid) and its composites[J]. Waste Management, 2019, 87: 335-344.
    [27]
    VIKRANTH V, KIRAN G A R, SHU C M. Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and PY-GC/MS[J]. Science of the Total Environment, 2021, 792: 1-16. https://www.sciencedirect.com/science/article/pii/S0360544213003800
    [28]
    HUANG G J, ZOU Y N, XIAO M, et al. Thermal degradation of poly(lactide-co-propylene carbonate) measured by TG/FTIR and PY-GC/MS[J]. Polymer Degradation and Stability, 2015, 117: 16-21. https://www.sciencedirect.com/science/article/pii/S014139101500110X

Catalog

    Article views (318) PDF downloads (79) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return