Citation: | GUO Jianwei, OU Yiwei, MA Junxian, OU Huaxin, WANG Yuehui. Thermal Decomposition Behavior of Castor Oil-based Polyurethane Resin[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 28-36. DOI: 10.6054/j.jscnun.2022082 |
[1] |
IBRAHIM S, AHMAD A, MOHAMED N S. Comprehensive studies on polymer electrolyte and dye-sensitized solar cell developed using castor oil-based polyurethane[J]. Journal of Solid State Electrochemistry, 2018, 22(2): 461-470. doi: 10.1007/s10008-017-3775-0
|
[2] |
XIE F W, ZHANG T L, BRYANT P, et al. Degradation and stabilization of polyurethane elastomers[J]. Progress in Polymer Science, 2019, 90: 211-268. doi: 10.1016/j.progpolymsci.2018.12.003
|
[3] |
MUTLU H, MAR M. Castor oil as a renewable resource for the chemical industry[J]. European Journal of Lipid Science and Technology, 2010, 112: 10-30. doi: 10.1002/ejlt.200900138
|
[4] |
LIU J W, HE J, XUE R, et al. Biodegradation and up-cycling of polyurethanes: progress, challenges, and prospects[J]. Biotechnology Advances, 2021, 48: 107-730. http://www.sciencedirect.com/science/article/pii/S0734975021000367
|
[5] |
MAGNIN A, POLLET E, PHALIP E, et al. Evaluation of biological degradation of polyurethanes[J]. Biotechnology Advances, 2020, 39: 107-457.
|
[6] |
ZHANG L, DING H. Study on the properties, morphology, and applications of castor oil polyurethane-poly(methyl methacrylate) IPNs[J]. Journal of Applied Polymer Science, 1997, 64: 1393-1401. doi: 10.1002/(SICI)1097-4628(19970516)64:7<1393::AID-APP19>3.0.CO;2-Y
|
[7] |
OPREA S. Synthesis and properties of polyurethane elastomers with castor oil as crosslinker[J]. Journal of the American Oil Chemists' Society, 2010, 87(3): 313-320. doi: 10.1007/s11746-009-1501-5
|
[8] |
ZHANG J, YAO M, CHEN J, et al. Synthesis and properties of polyurethane elastomers based on renewable castor oil polyols[J]. Journal of Applied Polymer Science, 2019, 136: 1-14.
|
[9] |
MALIK M, KAUR R. Mechanical and thermal properties of castor oil-based polyurethane adhesive: effect of TiO2 filler[J]. Advances in Polymer Technology, 2018, 37: 24-30. doi: 10.1002/adv.21637
|
[10] |
BISWAL S, SATAPATHY J, ACHARY P, et al. The synthesis and FTIR, Kinetics and TG/DTG/DTA study of inter penetrating polymer networks (IPNs) derived from polyurethanes of glycerol modified castor oil and cardanol based dyes[J]. Journal of Polymers and the Environment, 2012, 20(3): 788-793. doi: 10.1007/s10924-012-0474-x
|
[11] |
HABLOT E, ZHENG D, BOUQUEY M, et al. Polyurethanes based on castor oil: kinetics, chemical, mechanical and thermal properties[J]. Macromolecular Materials and Engineering, 2008, 293: 922-929. doi: 10.1002/mame.200800185
|
[12] |
PELUFO D I, NETO S C, GOBOO R C B, et al. Kinetic study of the thermal decomposition of castor oil based polyurethane[J]. Journal of Polymer Research, 2020, 27(6): 1-12.
|
[13] |
YIN T, COCKS D, HOFSTETTER W. Polaronic effects in one- and two-band quantum systems[J]. Physical Review A, 2015, 92(6): 063635/1-20. doi: 10.1103/PhysRevA.92.063635
|
[14] |
MONNIKA, NEHA M, VIMAL K. Generalized kinetics for thermal degradation and melt rheology for poly (lactic acid)/poly (butylene succinate)/functionalized chitosan based reactive nanobiocomposite[J]. International Journal of Biological Macromolecules, 2019, 141: 831-842. doi: 10.1016/j.ijbiomac.2019.09.058
|
[15] |
PARCHETA P, KOLTSOV I, DATTA J. Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis[J]. Polymer Degradation and Stability, 2018, 151: 90-99. doi: 10.1016/j.polymdegradstab.2018.03.002
|
[16] |
OTHMAN M, KHAN A, AHMAD Z, et al. Kinetic investigation and lifetime prediction of Cs-NIPAM-MBA-based thermo-responsive hydrogels[J]. Carbohydrate Polymers, 2016, 136: 1182-1193.
|
[17] |
骆强, 曲芳, 姚志鹏, 等. 典型航空电缆的热解动力学研究[J]. 华南师范大学学报(自然科学版), 2021, 53(5): 30-36. doi: 10.6054/j.jscnun.2021072
LUO Q, QU F, YAO Z P, et al. Study on pyrolysis kinetics of typical aviation cable[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(5): 30-36. doi: 10.6054/j.jscnun.2021072
|
[18] |
VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1): 1-19. https://www.sciencedirect.com/science/article/pii/S0040603111002152
|
[19] |
ABOULKAS A, HARFI K E, BOUADILII A E. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms[J]. Energy Conversion and Management, 2009, 51(7): 1363-1369. https://www.sciencedirect.com/science/article/pii/S0196890409005238
|
[20] |
FENG Y Z, WANG B, WANG F F, et al. Thermal degradation mechanism and kinetics of polycarbonate/silica nanocomposites[J]. Polymer Degradation and Stability, 2014, 107: 129-138. https://www.sciencedirect.com/science/article/pii/S0141391014001979
|
[21] |
CHAUDHARY R G, JUNEJA H D, PAGADALA R, et al. Synthesis, characterization and thermal degradation behavior of some coordination polymers by using TG-DTG and DTA techniques[J]. Journal of Saudi Chemical Society, 2015, 19(4): 442-453. https://www.sciencedirect.com/science/article/pii/S1319610314000866
|
[22] |
张立飞, 柳军旺, 马成国, 等. 石墨/聚丙烯复合材料的热降解过程与燃烧行为[J]. 华南师范大学学报(自然科学版), 2020, 52(1): 17-22. doi: 10.6054/j.jscnun.2019120
ZHANG L F, LIU J W, MA C G, et al. Thermal degradation process and combustion behavior of graphite/polypropylene composites[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(1): 17-22. doi: 10.6054/j.jscnun.2019120
|
[23] |
KAMENO N, YAMADA S, AMIMOTO T, et al. Thermal degradation of poly(lactic acid) oligomer: reaction mechanism and multistep kinetic behavior[J]. Polymer Degradation and Stability, 2016, 134: 284-295.
|
[24] |
QIAO Y Y, WANG B, ZONG P J, et al. Thermal beha-vior, kinetics and fast pyrolysis characteristics of palm oil: analytical TG-FTIR and Py-GC/MS study[J]. Energy Conversion and Management, 2019, 199: 1-10.
|
[25] |
LORIA M I, HERRERA W, CAUICH J V, et al. A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone)[J]. Journal of Thermal Analysis and Calorimetry, 2011, 104(2): 737-742. doi: 10.1007/s10973-010-1061-9
|
[26] |
LV S, ZHANG Y, TAN H. Thermal and thermo-oxidative degradation kinetics and characteristics of poly(lactic acid) and its composites[J]. Waste Management, 2019, 87: 335-344.
|
[27] |
VIKRANTH V, KIRAN G A R, SHU C M. Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and PY-GC/MS[J]. Science of the Total Environment, 2021, 792: 1-16. https://www.sciencedirect.com/science/article/pii/S0360544213003800
|
[28] |
HUANG G J, ZOU Y N, XIAO M, et al. Thermal degradation of poly(lactide-co-propylene carbonate) measured by TG/FTIR and PY-GC/MS[J]. Polymer Degradation and Stability, 2015, 117: 16-21. https://www.sciencedirect.com/science/article/pii/S014139101500110X
|