Citation: | CHEN Xinman, ZHONG Zhijian, YUE Zhixiu, ZHU Jun, GAO Fangliang, SHI Yanli, ZHANG Yong. Research Progress of Memristor-based Neuromorphic Synapses[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(6): 1-15. DOI: 10.6054/j.jscnun.2022079 |
[1] |
LAI Q, ZHANG L, LI Z, et al. Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions[J]. Advanced Materials, 2010, 22(22): 2448-2453. doi: 10.1002/adma.201000282
|
[2] |
OHNO T, HASEGAWA T, TSURUOKA T, et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses[J]. Nature Materials, 2011, 10(8): 591-595. doi: 10.1038/nmat3054
|
[3] |
JOSBERGER E E, DENG Y, SUN W, et al. Two-terminal protonic devices with synaptic-like short-term depression and device memory[J]. Advanced Materials, 2014, 26(29): 4986-4990. doi: 10.1002/adma.201400320
|
[4] |
CHANG T, JO S, LU W. Short-term memory to long-term memory transition in a nanoscale memristor[J]. ACS Nano, 2011, 5(9): 7669-7676. doi: 10.1021/nn202983n
|
[5] |
RACHMUTH G, POON C. Transistor analogs of emergent iono-neuronal dynamics[J]. HFSP Journal, 2008, 2(3): 156-166. doi: 10.2976/1.2905393
|
[6] |
LIU Y H, ZHU L Q, FENG P, et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes[J]. Advanced Materials, 2015, 27(37): 5599-5604. doi: 10.1002/adma.201502719
|
[7] |
LONT J B, GUGGENBUHL W. Analog CMOS implementation of a multilayer perceptron with nonlinear synapses[J]. IEEE Trans Neural Network, 1992, 3(3): 457-465. doi: 10.1109/72.129418
|
[8] |
CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507-519. doi: 10.1109/TCT.1971.1083337
|
[9] |
WILLIAMS R S, STRUKOV D B, SNIDER G S, et al. The missing memristor found[J]. Nature, 2008, 453: 80-83. doi: 10.1038/nature06932
|
[10] |
HE W, HUANG K, NING N, et al. Enabling an integrated rate-temporal learning scheme on memristor[J]. Scienti-fic Reports, 2014, 4: 4755/1-6.
|
[11] |
LI Y, ZHONG Y, ZHANG J, et al. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems[J]. Scientific Reports, 2014, 4: 4906/1-7.
|
[12] |
MILANO G, LUEBBEN M, MA Z, et al. Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities[J]. Nature Communications, 2018, 9(1): 5110-5151. doi: 10.1038/s41467-018-07561-8
|
[13] |
ZHU L Q, WAN C J, GUO L Q, et al. Artificial synapse network on inorganic proton conductor for neuromorphic systems[J]. Nature Communication, 2014, 5: 3158/1-7.
|
[14] |
XU W, CHO H, KIM Y, et al. Artificial synapses: organometal halide perovskite artificial synapses[J]. Advanced Materials, 2016, 28(28): 6019/1-7.
|
[15] |
LI B, LIU Y, WAN C, et al. Mediating short-term plasti-city in an artificial memristive synapse by the orientation of silica mesopores[J]. Advanced Materials, 2018, 30(16): 1706395/1-7.
|
[16] |
NAJEM J S, TAYLOR G J, WEISS R J, et al. Memristive ion channel-doped biomembranes as synaptic mimics[J]. ACS Nano, 2018, 12(5): 4702-4711. doi: 10.1021/acsnano.8b01282
|
[17] |
ZHANG Y, ZHONG S, SONG L, et al. Emulating dynamic synaptic plasticity over broad timescales with memristive device[J]. Applied Physics Letters, 2018, 113(20): 203102/1-5.
|
[18] |
WANG Z, JOSHI S, SAVEL S E, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing[J]. Nature Materials, 2017, 16(1): 101-108. doi: 10.1038/nmat4756
|
[19] |
NAJEM J S, TAYLOR G J, WEISS R J, et al. Memristive ion channel-doped biomembranes as synaptic mimics[J]. ACS Nano, 2018, 12(5): 4702-4711. doi: 10.1021/acsnano.8b01282
|
[20] |
MALENKA R C, BEAR M F. LTP and LTD: an embarrassment of riches[J]. Neuron, 2004, 44(1): 5-21. doi: 10.1016/j.neuron.2004.09.012
|
[21] |
DANG B, WU Q, SONG F, et al. A bio-inspired physically transient/biodegradable synapse for security neuromorphic computing based on memristors[J]. Nanoscale, 2018, 10(43): 20089-20095. doi: 10.1039/C8NR07442A
|
[22] |
KIM S, KIM H, WANG S, et al. Analog synaptic behavior of a silicon nitride memristor[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40420-40427.
|
[23] |
WANG Z, XU H, LI X, et al. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor[J]. Advanced Functional Materials, 2012, 22(13): 2759-2765. doi: 10.1002/adfm.201103148
|
[24] |
JO S, CHANG T, EBONG I, et al. Nanoscale memristor device as synapse in neuromorphic systems[J]. Nano Letters, 2010, 10(4): 1297-1301. doi: 10.1021/nl904092h
|
[25] |
SHEN J X, SHANG D S, CHAI Y S, et al. Mimickingsynaptic plasticity and neural network using memtranstors[J]. Advanced Materials, 2018, 30(12): 1706717/1-8.
|
[26] |
BLISS T, GARDNER-MEDWIN A. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path[J]. The Journal of Physiology, 1973, 232(2): 331-356. doi: 10.1113/jphysiol.1973.sp010273
|
[27] |
BEAR M F, MALENKA R C. Synaptic plasticity: LTP and LTD[J]. Current Opinion in Neurobiology, 1994, 4(3): 389-399. doi: 10.1016/0959-4388(94)90101-5
|
[28] |
YANG C S, SHANG D S, LIU N, et al. A synaptic transistor based on quasi-2D molybdenum oxide[J]. Advanced Materials, 2017, 29(27): 1700906/1-10.
|
[29] |
REN Y, HU L, MAO J, et al. Phosphorene nano-heterostructure based memristors with broadband response synaptic plasticity[J]. Journal of Materials Chemistry C, 2018, 6(35): 9383-9393. doi: 10.1039/C8TC03089H
|
[30] |
ZHOU L, MAO J Y, REN Y, et al. Biological spiking synapse constructed from solution processed bimetal core-shell nanoparticle based composites[J]. Small, 2018, 14(28): 1800288/1-10.
|
[31] |
XIAO Z, HUANG J. Energy-efficient hybrid perovskite memristors and synaptic devices[J]. Advanced Electronic Materials, 2016, 2(7): 1600100/1-8.
|
[32] |
MILO V, PEDRETTI G, CARBONI R, et al. Demonstration of hybrid CMOS/RRAM neural networks with spike time/rate-dependent plasticity[C]. 2016 IEEE International Electron Devices Meeting (IEDM). San Francisco: IEEE, 2016.
|
[33] |
LIU Q, WANG L, YANG J, et al. Fusion ofimage storage and operation based on Ag-chalcogenide memristor with synaptic plasticity[J]. Journal of Circuits Systems & Computers, 2017: 1750161/1-17.
|
[34] |
LI Y, ZHONG Y, ZHANG J, et al. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems[J]. Scientific Reports, 2014, 4: 4906/1-7.
|
[35] |
BI G, POO M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type[J]. Journal of Neuroscience, 1998, 18(24): 10464-10472. doi: 10.1523/JNEUROSCI.18-24-10464.1998
|
[36] |
MARKRAM H, LUBKE J, FROTSCHER M, et al. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs[J]. Science, 1997, 275: 213-215. doi: 10.1126/science.275.5297.213
|
[37] |
WILLIAMSON A, SCHUMANN L, HILLER L, et al. Synaptic behavior and STDP of asymmetric nanoscale memristors in biohybrid systems[J]. Nanoscale, 2013, 5(16): 7297-7303. doi: 10.1039/c3nr01834b
|
[38] |
SONG S, ABBOTT L F, MILLER K D. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[J]. Nature Neuroscience, 2000, 3(9): 919-926. doi: 10.1038/78829
|
[39] |
WU Y, YU S, WONG H S P, et al. AlOx-based resistive switching device with gradual resistance modulation for neuromorphic device application[C]. 2012 4th IEEE International Memory Workshop. Milan: IEEE, 2012.
|
[40] |
LASHKARE S, PANWAR N, KUMBHARE P, et al. PCMO-based RRAM and NPN bipolar selector as synapse for energy efficient STDP[J]. IEEE Electron Device Letters, 2017, 38(9): 1212-1215. doi: 10.1109/LED.2017.2723503
|
[41] |
PANWAR N, RAJENDRAN B, GANGULY U. Arbitrary Spike Time Dependent Plasticity (STDP) in memristor by analog waveform engineering[J]. IEEE Electron Device Letters, 2017, 38(6): 740-743. doi: 10.1109/LED.2017.2696023
|
[42] |
SONG S, MILLER K D, ABBOTT L F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[J]. Nature Neuroscience, 2000, 3(9): 919-926. doi: 10.1038/78829
|
[43] |
WITTENBERG G M, WANG S S H. Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse[J]. Journal of Neuroscience, 2006, 26(24): 6610-6617. doi: 10.1523/JNEUROSCI.5388-05.2006
|
[44] |
CASSENAER S, LAURENT G. Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts[J]. Nature, 2007, 448: 709-713. doi: 10.1038/nature05973
|
[45] |
FIETE I R, SEN N W, WANG C Z, et al. Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity[J]. Neuron, 2010, 65(4): 563-576. doi: 10.1016/j.neuron.2010.02.003
|
[46] |
KUZUM D, JEYASINGH R G, LEE B, et al. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing[J]. Nano Letters, 2012, 12(5): 2179-2186. doi: 10.1021/nl201040y
|
[47] |
ABRAHAM W C. Metaplasticity: tuning synapses and networks for plasticity[J]. Nature Reviews Neuroscience, 2008, 9(5): 387-399. doi: 10.1038/nrn2356
|
[48] |
CHRISTIE B R, ABRAHAM W C. Priming of associative long-term depression in the dentate gyrus by theta frequency synaptic activity[J]. Neuron, 1992, 9(1): 79-84. doi: 10.1016/0896-6273(92)90222-Y
|
[49] |
STAUBLI U, LYNCH G. Stable depression of potentiated synaptic responses in the hippocampus with 1-5 Hz sti-mulation[J]. Brain Research, 1990, 513(1): 113-118. doi: 10.1016/0006-8993(90)91096-Y
|
[50] |
FUJII S, SAITO K, MIYAKAWA H, et al. Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hip-pocampal slices[J]. Brain Research, 1991, 555(1): 112-122. doi: 10.1016/0006-8993(91)90867-U
|
[51] |
HULME S R, JONES O D, ABRAHAM W C. Emerging roles of metaplasticity in behaviour and disease[J]. Trends in Neurosciences, 2013, 36(6): 353-362. doi: 10.1016/j.tins.2013.03.007
|
[52] |
DISTERHOFT J F, OH M M. Learning, aging and intrinsic neuronal plasticity[J]. Trends Neurosciences, 2006, 29(10): 587-599. doi: 10.1016/j.tins.2006.08.005
|
[53] |
LINDEN D J, ZHANG W. The other side of the engram: experience-driven changes in neuronal intrinsic excitabi-lity[J]. Nature Reviews Neuroscience, 2003, 4(11): 885-900. doi: 10.1038/nrn1248
|
[54] |
ECKERT M J, ABRAHAM W C. Physiological effects of enriched environment exposure and LTP induction in the hippocampus in vivo do not transfer faithfully to in vitro slices[J]. Learning & Memory, 2010, 17(10): 480-484.
|
[55] |
MALIK R, CHATTARJI S. Enhanced intrinsic excitability and EPSP-spike coupling accompany enriched environment-induced facilitation of LTP in hippocampal CA1 pyramidal neurons[J]. Journal of Neurophysiology, 2012, 107(5): 1366-1378. doi: 10.1152/jn.01009.2011
|
[56] |
TAN Z H, YANG R, TERABE K, et al. Synaptic metaplasticity realized in oxide memristive devices[J]. Advanced Materials, 2016, 28(2): 377-384. doi: 10.1002/adma.201503575
|
[57] |
LEE T, HWANG H, WOO J, et al. Synaptic plasticity and metaplasticity of biological synapse realized in a KNbO3 memristor for application to artificial synapse[J]. ACS Applied Materials & Interfaces, 2018, 10(30): 25673-25682.
|
[58] |
ZHONG Z, JIANG Z, HUANG J, et al. "Stateful" threshold switching for neuromorphic[J]. Nanoscale, 2022, 14(14): 5010-5021.
|
[59] |
ZHANG C, YE W B, ZHOU K, et al. Bioinspired artificial sensory nerve based on nafion memristor[J]. Advanced Functional Materials, 2019, 29(20): 1808783/1-10.
|
[60] |
GE J, ZHANG S, LIU Z, et al. Flexible artificial nociceptor using a biopolymer-based forming-free memristor[J]. Nanoscale, 2019, 11(14): 6591-6601. doi: 10.1039/C8NR08721K
|
[61] |
YANG X, FANG Y, YU Z, et al. Nonassociative learning implementation by a single memristor-based multi-terminal synaptic device[J]. Nanoscale, 2016, 8(45): 18897-18904. doi: 10.1039/C6NR04142F
|
[62] |
WANG Z, HONG Q, WANG X. Memristive circuit design of emotional generation and evolution based on skin-like sensory processor[J]. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13(4): 631-644. doi: 10.1109/TBCAS.2019.2923055
|
[63] |
YOON J H, WANG Z, KIM K M, et al. An artificial nociceptor based on a diffusive memristor[J]. Nature Communications, 2018, 9(1): 417-419. doi: 10.1038/s41467-017-02572-3
|
[64] |
COHEN T E, KAPLAN S W, KANDEL E R, et al. A simplified preparation for relating cellular events to behavior: mechanisms contributing to habituation, dishabituation, and sensitization of the Aplysia Gill-Withdrawal reflex[J]. Journal of Neuroscience, 1997, 17(8): 2886-2899. doi: 10.1523/JNEUROSCI.17-08-02886.1997
|
[65] |
THOMPSON R F, SPENCER W A. Habituation: a model phenomenon for the study of neuronal substrates of beha-vior[J]. Psychological Review, 1966, 73(1): 16-43. doi: 10.1037/h0022681
|
[66] |
FRUHSTORFER H. Habituation and dishabituation of the human vertex response[J]. Electroencephalography and Clinical Neurophysiology, 1971, 30(4): 306-312. doi: 10.1016/0013-4694(71)90113-1
|
[67] |
CAREW T J, CASTELLUCCI V F, KANDEL E R. An analysis of dishabituation and sensitization of the gill-withdrawal reflex in Aplysia[J]. The International Journal of Neuroscience, 1971, 2(2): 79-88. doi: 10.3109/00207457109146995
|
[68] |
ZHAO B, XIAO M, SHEN D, et al. Heterogeneous stimuli induced nonassociative learning behavior in ZnO nanowire memristor[J]. Nanotechnology, 2019, 31(12): 125201/1-23.
|
[69] |
PERSHIN Y V, DI VENTRA M. Experimental demonstration of associative memory with memristive neural networks[J]. Neural Networks, 2010, 23(7): 881-886. doi: 10.1016/j.neunet.2010.05.001
|
[70] |
ZIEGLER M, SONI R, PATELCZYK T, et al. An electronic version of Pavlov's dog[J]. Advanced Functional Materials, 2012, 22(13): 2744-2749. doi: 10.1002/adfm.201200244
|
[71] |
BICHLER O, ZHAO W, ALIBART F, et al. Pavlov's dog associative learning demonstrated on synaptic-like organic transistors[J]. Neural Computation, 2013, 25(2): 549-566. doi: 10.1162/NECO_a_00377
|
[72] |
WAN C, ZHOU J, SHI Y, et al. Classical conditioning mimicked in junctionless IZO electric-double-layer thin-film transistors[J]. IEEE Electron Device Letters, 2014, 35(3): 414-416. doi: 10.1109/LED.2014.2299796
|
[73] |
WU C, KIM T W, GUO T, et al. Mimicking classical conditioning based on a single flexible memristor[J]. Advanced Materials, 2017, 29(10): 1602890/1-10.
|
[74] |
ZHONG Y, GAO X, XU J, et al. Selective UV-gating organic memtransistors with modulable levels of synaptic plasticity[J]. Advanced Electronic Materials, 2019, 6(2): 1900955/1-7.
|
[75] |
HU D, YANG R, JIANG L, et al. Memristive synapses with photoelectric plasticity realized in ZnO1-x/AlOy heterojunction[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6463-6470.
|
[76] |
ZHOU F, ZHOU Z, CHEN J, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors[J]. Nature Nanotechnology, 2019, 14(8): 776-782. doi: 10.1038/s41565-019-0501-3
|
[77] |
CHEN S, LOU Z, CHEN D, et al. An artificial flexible visual memory system based on an UV-motivated memristor[J]. Advanced Materials, 2018, 30(7): 1705400/1-9.
|
[78] |
GAO S, LIU G, YANG H, et al. An oxide schottky junction artificial optoelectronic synapse[J]. ACS nano, 2019, 13(2): 2634-2642. doi: 10.1021/acsnano.9b00340
|
[79] |
ZHOU F, ZHOU Z, CHEN J, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors[J]. Nature Nanotechnology, 2019, 14(8): 776-782. doi: 10.1038/s41565-019-0501-3
|
[80] |
LI H, JIANG X, YE W, et al. Fully photon modulated heterostructure for neuromorphic computing[J]. Nano Energy, 2019, 65: 104000/1-37.
|
[81] |
MAIER P, HARTMANN F, DIAS M, et al. Light sensitive memristor with bi-directional and wavelength-dependent conductance control[J]. Applied Physics Letters, 2016, 109(2): 23501/1-6.
|
[82] |
SHERIDAN P, CAI F, DU C, et al. Sparse coding with memristor networks[J]. Nature Nanotechnology, 2017, 12(8): 784-789. doi: 10.1038/nnano.2017.83
|
[83] |
PREZIOSO M, MERRIKH-BAYAT F, HOSKINS B D, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors[J]. Nature, 2015, 521: 61-64. doi: 10.1038/nature14441
|
[84] |
PARK S, CHU M, KIN J, et al. Electronic system with memristive synapses for pattern recognition[J]. Scientific Reports, 2015, 5(1): 10123/1-9.
|
[85] |
SHERIDANP, DU C, LU W. Feature extraction using memristor networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(11): 2327-2336. doi: 10.1109/TNNLS.2015.2482220
|
[86] |
CHOI S, SHIN J, LEE J, et al. Experimental demonstration of feature extraction and dimensionality reduction using memristor networks[J]. Nano Letters, 2017, 17(5): 3113-3118. doi: 10.1021/acs.nanolett.7b00552
|
[87] |
JEONG Y, LEE J, MOON J, et al. K-means data clustering with memristor networks[J]. Nano Letters, 2018, 18(7): 4447-4453. doi: 10.1021/acs.nanolett.8b01526
|
[88] |
PARK S, CHU M, KIN J, et al. Electronic system with memristive synapses for pattern recognition[J]. Scientific Reports, 2015, 5(1): 10123/1-9.
|
[89] |
CHU M, KIM B, PARK S, et al. Neuromorphic hardware system for visual pattern recognition with memristor array and CMOS neuron[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2410-2419. doi: 10.1109/TIE.2014.2356439
|
[90] |
YAO P, WU H, GAO B, et al. Face classification using electronic synapses[J]. Nature Communications, 2017, 8(1): 15199/1-8.
|
[91] |
AL-SHEDIVAT M, NAOUS R, GAUWENBERGHS G, et al. Memristors empower spiking neurons with stochasticity[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, 5(2): 242-253. doi: 10.1109/JETCAS.2015.2435512
|
[92] |
ZHANG T, XU X, CAI Y, et al. Memristive devices and networks for brain-inspired computing[J]. Physica Status Solidi-Rapid Research Letters, 2019, 13(8): 1900029/1-21.
|
[93] |
WANG C, HE W, TONG Y, et al. Memristive devices with highly repeatable analog states boosted by graphene quantum dots[J]. Small, 2017, 13(20): 1603435/1-8.
|
[94] |
JIANG B C, NAM Y, KOO B J, et al. Memristive logic-in-memory integrated circuits for energy-efficient flexible electronics[J]. Advanced Functional Materials, 2018, 28(2): 1704725/1-10.
|