Citation: | LI Jingcong, LIN Zhenyuan, PAN Weijian, WU Chaohuang, PAN Jiahui. A Method of Few-shot EEG Artifact Detection Based on the Prototype Network[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 113-120. DOI: 10.6054/j.jscnun.2022065 |
[1] |
吴朝晖, 俞一鹏, 潘纲, 等. 脑机融合系统综述[J]. 生命科学, 2014, 26(6): 645-649. https://www.cnki.com.cn/Article/CJFDTOTAL-SMKX201406013.htm
WU Z H, YU Y P, PAN G, et al. Brain-machine integrated systems[J]. Chinese Bulletin of Life Sciences, 2014, 26(6): 645-649. https://www.cnki.com.cn/Article/CJFDTOTAL-SMKX201406013.htm
|
[2] |
KWON O Y, LEE M H, GUAN C, et al. Subject-indepen-dent brain-computer interfaces based on deep convo-lutional neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(10): 3839-3852.
|
[3] |
CHATZICHRISTOS C, DAN J, NARAYANAN A M, et al. Epileptic seizure detection in EEG via fusion of multi-view attention-gated U-net deep neural networks[C]//Proceedings of 2020 IEEE Signal Processing in Medicine and Biology Symposium. Philadelphia: IEEE, 2020: 1-7.
|
[4] |
SUPRATAK A, GUO Y. TinySleepNet: an efficient deep learning model for sleep stage scoring based on raw single-channel EEG[C]//Proceedings of 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Montreal: IEEE, 2020: 641-644.
|
[5] |
URIGVEN J A, GARCIA-ZAPIRAIN B. EEG artifact removal—state-of-the-art and guidelines[J]. Journal of Neural Engineering, 2015, 12(3): 031001/1-23. doi: 10.1088/1741-2560/12/3/031001
|
[6] |
FATOURECHI M, BASHASHATI A, WARD R K, et al. EMG and EOG artifacts in brain computer interface systems: a survey[J]. Clinical Neurophysiology, 2007, 118(3): 480-494. doi: 10.1016/j.clinph.2006.10.019
|
[7] |
OCHOA C J, POLICH J. P300 and blink instructions[J]. Clinical Neurophysiology, 2000, 111(1): 93-98. doi: 10.1016/S1388-2457(99)00209-6
|
[8] |
GERLA V, KREMEN V, COVASSIN N, et al. Automatic identification of artifacts and unwanted physiologic signals in EEG and EOG during wakefulness[J]. Biomedical Signal Processing and Control, 2017, 31: 381-390. doi: 10.1016/j.bspc.2016.09.006
|
[9] |
KUMAR P S, ARUMUGANATHAN R, SIVAKUMAR K, et al. Removal of artifacts from EEG signals using adaptive filter through wavelet transform[C]//Proceedings of 2008 9th International Conference on Signal Processing. Beijing: IEEE, 2008: 2138-2141.
|
[10] |
HUANG R, HENG F, HU B, et al. Artifacts reduction method in EEG signals with wavelet transform and adaptive filter[C]//Proceedings of International Conference on Brain Informatics and Health. Warsaw: Springer, 2014: 122-131.
|
[11] |
WANG J W, SU F. A new time-frequency method for EEG artifacts removing[C]//Proceedings of 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems. Shenzhen: IEEE, 2014: 341-346.
|
[12] |
SEJNOWSKI T J. Independent component analysis of electroencephalographic data[C]//Proceedings of the 8th International Conference on Neural Information Processing Systems. Cambridge, MA: IEEE, 1995: 1548-1551.
|
[13] |
IRIARTE J, URRESTARAZU E, VALENCIA M, et al. Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study[J]. Journal of Clinical Neurophysiology, 2003, 20(4): 249-257. doi: 10.1097/00004691-200307000-00004
|
[14] |
RADVNTZ T, SCOUTEN J, HOCHMUTH O, et al. EEG artifact elimination by extraction of ICA-component features using image processing algorithms[J]. Journal of Neuroscience Methods, 2015, 243: 84-93. doi: 10.1016/j.jneumeth.2015.01.030
|
[15] |
RADVNTZ T, SCOUTEN J, HOCHMUTH O, et al. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features[J]. Journal of Neural Engineering, 2017, 14(4): 046004/1-8.
|
[16] |
LEE S S, LEE K, KANG G. EEG artifact removal by bayesian deep learning & ICA[C]//Proceedings of 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Montreal: IEEE, 2020: 932-935.
|
[17] |
KHATWANI M, HOSSEINI M, PANELIYA H, et al. Energy efficient convolutional neural networks for EEG artifact detection[C]//Proceedings of 2018 IEEE Biomedical Circuits and Systems Conference(BioCAS). Cleveland: IEEE, 2018: 1-4.
|
[18] |
MANJUNATH N K, PANELIYA H, HOSSEINI M, et al. A low-power LSTM processor for multi-channel brain EEG artifact detection[C]//Proceedings of 2020 21st International Symposium on Quality Electronic Design (ISQED). Santa Clara: IEEE, 2020: 105-110.
|
[19] |
JUNG H G, LEE S W. Few-shot learning with geometric constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4660-4672. doi: 10.1109/TNNLS.2019.2957187
|
[20] |
KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]//Procee-dings of ICML Deep Learning Workshop. Lille: ICML, 2015: 1-8.
|
[21] |
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Mat-ching networks for one shot learning[J]. Advances in Neural Information Processing Systems, 2016, 29: 3630-3638.
|
[22] |
SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017: 4080-4090.
|
[23] |
YANG S, WU S H, LIU T L, et al. Bridging the gap between few-shot and many-shot learning via distribution calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021(1): 1-13.
|
[24] |
LAWHERN V J, SOLON A J, WAYTOWICH N R, et al. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2018, 15(5): 056013/1-30.
|
[25] |
SHAH V, GOLMOHAMMADI M, ZIYABARI S, et al. Optimizing channel selection for seizure detection[C]// Proceedings of 2017 IEEE Signal Processing in Medicine and Biology Symposium(SPMB). Philadelphia: IEEE, 2017: 1-5.
|
[26] |
VANABELLE P, HANDSCHUTTER P D, TAHRY R E, et al. Epileptic seizure detection using EEG signals and extreme gradient boosting[J]. The Journal of Biomedical Research, 2020, 34(3): 228-239. doi: 10.7555/JBR.33.20190016
|
[27] |
SHIM K H, JEONG J H, KWON B H, et al. Assistive robotic arm control based on brain-machine interface with vision guidance using convolution neural network[C]//Proceedings of 2019 IEEE International Conference on Systems, Man and Cybernetics. Bari: IEEE, 2019: 2785-2790.
|