Citation: | BI Shujun, WENG Yihong. A Low-rank Spectral Estimation of Markov Process[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 101-108. DOI: 10.6054/j.jscnun.2022063 |
[1] |
ZHANG A, WANG M D. Spectral state compression of Markov processes[J]. IEEE Transactions on Information Theory, 2020, 66(5): 3202-3231. doi: 10.1109/TIT.2019.2956737
|
[2] |
BENCZÚR A A, CSALOGÁNY K, SARLS T. On the feasibility of low-rank approximation for personalized Page-Rank[C]//Proceedings of Special Interest Tracks and Posters of the 14th International Conference on World Wide Web. New York: Association for Computing Machi-nery, 2005: 972-973.
|
[3] |
NEGAHBAN S, OH S, SHAH D. Rank centrality: ranking from pairwise comparisons[J]. Operations Research, 2017, 65(1): 266-287. doi: 10.1287/opre.2016.1534
|
[4] |
LIU Y, KANG C, GAO S, et al. Understanding intra-urban trip patterns from taxi trajectory data[J]. Journal of Geographical Systems, 2012, 14(4): 463-483. doi: 10.1007/s10109-012-0166-z
|
[5] |
李耀华, 任田园, 邵攀登, 等. 基于马尔可夫链的西安市城市公交工况构建[J]. 中国科技论文, 2019, 14(2): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201902001.htm
LI Y H, REN T Y, SHAO P D, et al. Development of dri-ving cycle of bus in Xi'an city based on Markov chain[J]. China Sciencepaper, 2019, 14(2): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201902001.htm
|
[6] |
BENSON A R, GLEICH D F, LIM L H. The spacey random walk: a stochastic process for higher-order data[J]. SIAM Review, 2017, 59(2): 321-345. doi: 10.1137/16M1074023
|
[7] |
SANDERS J, PROUTIERE A, YUN S Y. Clustering in block Markov chains[J]. Annals of Statistics, 2020, 48(10): 3488-3512.
|
[8] |
ZHU Z W, LI X D, WANG M D, et al. Learning Markov models via low-rank optimization[J]. arXiv, (2020-11-26)[2021-05-15]. https://arxiv.org/abs/1907.00113v2.
|
[9] |
徐翔斌, 李志鹏. 强化学习在运筹学的应用: 研究进展与展望[J]. 运筹与管理, 2020, 29(5): 227-239. https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL202005027.htm
XU X B, LI Z P. Research progress and prospects for application of reinforcement learning in operations research[J]. Operations Research and Management Science, 2020, 29(5): 227-239. https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL202005027.htm
|
[10] |
翟永, 刘津, 陈杰, 等. 基于马尔可夫链的无桩共享单车车辆投放规模分析[J]. 北京交通大学学报, 2019(5): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201905004.htm
ZHAI Y, LIU J, CHEN J, et al. Analysis of dockless bike-sharing fleet size based on Markov chain[J]. Journal of Beijing Jiaotong University, 2019(5): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201905004.htm
|
[11] |
PANG J S. Error bounds in mathematical programming[J]. Mathematical Programming, 1997, 79: 299-332.
|
[12] |
TSENG P. Approximation accuracy, gradient methods, and error bound for structured convex optimization[J]. Mathematical Programming, 2010, 125(2): 263-295. doi: 10.1007/s10107-010-0394-2
|
[13] |
ZHOU Z R, SO A M. A unified approach to error bounds for structured convex optimization problems[J]. Mathematical Programming, 2017, 165(2): 689-728. doi: 10.1007/s10107-016-1100-9
|
[14] |
LI G, MORDUKHOVICH B S, NGHIA T T A, et al. Error bounds for parametric polynomial systems with applications to higher-order stability analysis and convergence rates[J]. Mathematical Programming, 2018, 168: 313-346. doi: 10.1007/s10107-016-1014-6
|
[15] |
BI S J, PAN S H. Error bounds for rank constrained optimization problems and applications[J]. Operations Research Letters, 2016, 44(3): 336-341.
|
[16] |
LEVIN D A, PERES Y, WILMER E L. Markov chains and mixing times[M]. Rhode Island: American Mathematical Society, 2009.
|
[17] |
ANDERSON T W, GOODMAN L A. Statistical inference about Markov chains[J]. The Annals of Mathematical Statistics, 1957, 28(1): 89-110.
|