• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YANG Li, ZHANG Li, ZHANG Shan, LI Jie, WANG Tong, WANG Ke, SHEN Yun. The Green Synthesis of nZVI Using Pomegranate Peel Extract and Its Reaction Mechanism[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 56-64. DOI: 10.6054/j.jscnun.2022058
Citation: YANG Li, ZHANG Li, ZHANG Shan, LI Jie, WANG Tong, WANG Ke, SHEN Yun. The Green Synthesis of nZVI Using Pomegranate Peel Extract and Its Reaction Mechanism[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 56-64. DOI: 10.6054/j.jscnun.2022058

The Green Synthesis of nZVI Using Pomegranate Peel Extract and Its Reaction Mechanism

More Information
  • Received Date: March 28, 2022
  • Available Online: September 21, 2022
  • Nano zero valent iron nanoparticles (GS-nZVI) were green-synthesized with pomegranate peel extract as the reducing agent and stabilizer. The physical and chemical properties of GS-nZVI product were characterized with scanning electron microscope (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscop (FTIR), X-ray photoelectron spectroscop (XPS) and Thermo-Gravimetric Analysis (TGA). The particle size and surface Zeta potential of the products were measured with the laser-scattering Zetasizer instrument. Based on the basic principle of chemical equilibrium, the effects of synthesis conditions such as reaction time, iron salt concentration and polyphenol concentration on the particle size and yield were discussed and the possible mechanism was proposed. The results showed that GS-nZVI synthesized from pomegranate peel extract had an amorphous structure and polyphenols in the extract not only reduced the ferritic salt (Fe2+) to Fe0 but also coated on the surface of nanoparticles as a stabilizer to improve the dispersion of the samples. The results proved that 120 min reaction time, 0.05 mol/L Fe2+ and 15 mg/mL polyphenol was the best preparation condition of GS-nZVI with the highest yield and the smallest particle size, and the mean particle size was 213 nm.
  • [1]
    MADHAVI V, PRASAD T N, REDDY A V B, et al. Application of phytogenic zero valent iron nanoparticles in the adsorption of hexavalent chromium[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 116: 17-25. doi: 10.1016/j.saa.2013.06.045
    [2]
    QU J, LIU Y, CHENG L, et al. Green synthesis of hydrophilic activated carbon supported sulfide nZVI for enhanced Pb(Ⅱ) scavenging from water: characterization, kinetics, isotherms and mechanisms[J]. Journal of Hazardous Materials, 2021, 403: 123607/1-11.
    [3]
    XUE C, PENG Y M, CHEN A W, et al. Drastically inhibited nZVI-Fenton oxidation of organic pollutants by cysteine: multiple roles in the nZVI/O2/hv system[J]. Journal of Colloid and Interface Science, 2021, 582: 22-29. doi: 10.1016/j.jcis.2020.08.036
    [4]
    张苑芳, 吴宏海, 寇卓瑶, 等. 硫化纳米零价铁对五氯苯酚的脱氯及其增强反应[J]. 华南师范大学学报(自然科学版), 2019, 51(6): 42-50. doi: 10.6054/j.jscnun.2019021

    ZHANG Y F, WU H H, KOU Z Y, et al. The dechlorination activity of sulfide-modified nanoscale zero-valent iron for pentachlorophenol and its enhanced reaction[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(6): 42-50. doi: 10.6054/j.jscnun.2019021
    [5]
    易云强, 方战强. 纳米零价铁-双氧水协同提升甲硝唑矿化率的研究[J]. 华南师范大学学报(自然科学版), 2018, 50(1): 28-32. doi: 10.6054/j.jscnun.2018016

    YI Y Q, FANG Z Q. Enhanced mineralization of metronidazole by the synergism of hydrogen peroxide and nanoscale zero-valent iron[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(1): 28-32. doi: 10.6054/j.jscnun.2018016
    [6]
    LIU K, LI F, TIAN Q, et al. A highly porous animal bone-derived char with a superiority of promoting nZVI for Cr(Ⅵ) sequestration in agricultural soils[J]. Journal of Environmental Sciences, 2021, 104: 27-39. doi: 10.1016/j.jes.2020.11.031
    [7]
    DAI Y, HU Y, JIANG B, et al. Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction[J]. Journal of Hazardous Materials, 2016, 309: 249-258. doi: 10.1016/j.jhazmat.2015.04.013
    [8]
    WEN R, TU B, GUO X, et al. An iron release controlled Cr(Ⅵ) treatment agent: nano zero-valent iron/carbon/alginate composite gel[J]. International Journal of Biolo-gical Macromolecules, 2020, 146: 692-704. doi: 10.1016/j.ijbiomac.2019.12.168
    [9]
    WANG P, FU F, LIU T. A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: emergence, preparation, optimization and mechanism[J]. Chemosphere, 2021, 285: 131435/1-13.
    [10]
    HUANG L, WENG X, CHEN Z, et al. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 117: 801-804. doi: 10.1016/j.saa.2013.09.054
    [11]
    MAREEDU T, POIBA V, VANGALAPATI M. Green synthesis of iron nanoparticles by green tea and black tea leaves extract[J]. Materials Today: Proceedings, 2021, 42: 1498-1501. doi: 10.1016/j.matpr.2021.01.444
    [12]
    BOLADE O P, WILLIAMS A B, BENSON N U. Green synthesis of iron-based nanomaterials for environmental remediation: a review[J]. Environmental Nanotechnology, Monitoring & Management, 2020, 13: 100279/1-18.
    [13]
    GHOLAMI A, KHOSRAVI R, KHOSRAVI A, et al. Data on the optimization of the synthesis of green iron nanoparticles using plants indigenous to South Khorasan. Data on the optimization of the synthesis of green iron nanoparticles using plants indigenous to south khorasan[J]. Data in Brief, 2018, 21: 1779-1783. doi: 10.1016/j.dib.2018.11.030
    [14]
    MONDAL P, ANWESHAN A, PURKAIT M K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: a review[J]. Chemosphere, 2020, 259: 127509/1-12.
    [15]
    王嘉瑜, 蒲生彦, 侯国庆. 植物提取液绿色合成纳米铁去除地下水中Cr(Ⅵ)[J]. 环境工程学报, 2020, 14(9): 2537-2547. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202009028.htm

    WANG J Y, PU S Y, HOU G Q. Green synthesis of nZVI using plant extracts for treatment of hexavalent chromium in groundwater[J]. Chinese Journal of Environmental Engineering, 2020, 14(9): 2537-2547. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ202009028.htm
    [16]
    KHESHTZAR R, BERENJIAN A, GANJI N, et al. Response surface methodology and reaction optimization to product zero-valent iron nanoparticles for organic pollutant remediation[J]. Biocatalysis and Agricultural Biotechnology, 2019, 21: 101329/1-11.
    [17]
    KADERIDES K, KYRIAKOUDI A, MOURTZINOS I, et al. Potential of pomegranate peel extract as a natural additive in foods[J]. Trends in Food Science & Technology, 2021, 115: 380-390.
    [18]
    ZHOU Q, SUN L, DAI Y, et al. Comparative study of chemical composition of pomegranate peel pomegranates inside and pomegranate seeds[J]. China Journal of Chinese Materia Medica, 2013, 38(13): 2159-2162.
    [19]
    王娟丽, 王以强, 陈岗庆, 等. 烷基二苯醚双磺酸盐对纳米ZnO水悬浮液稳定性的研究[J]. 化工时刊, 2007, 21(11): 34-36. doi: 10.3969/j.issn.1002-154X.2007.11.011

    WANG L J, WANG Y Q, CHEN G Q, et al. The study on stability of nano-ZnO aqueous suspension[J]. Chemical Industry Times, 2007, 21(11): 34-36. doi: 10.3969/j.issn.1002-154X.2007.11.011
    [20]
    沈慧. 阳离子性四氧化三铁磁性颗粒的制备[D]. 成都: 电子科技大学, 2014.

    SHEN H. Preparation of cationic magnetic particles[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
    [21]
    WANG T, JIN X, CHEN Z, et al. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater[J]. Science of the Total Environment, 2014, 466/467: 210-213. doi: 10.1016/j.scitotenv.2013.07.022
    [22]
    KHESHTZAR R, BERENJIAN A, TAGHIZADEH S M, et al. Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles[J]. Green Processing and Synthesis, 2019, 8(1): 846-855. doi: 10.1515/gps-2019-0055
    [23]
    ZHANG Y, JIAO X, LIU N, et al. Enhanced removal of aqueous Cr(Ⅵ) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar[J]. Chemosphere, 2020, 245: 125542/1-9.
    [24]
    刘柳, 胡佩伟, 高润琴, 等. 纳米零价铁强化高岭石去除水中Cr(Ⅵ)及机制研究[J]. 硅酸盐通报, 2021, 40(5): 1529-1535. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202105014.htm

    LIU L, HU P W, GAO R Q, et al. Removal of Cr(Ⅵ) from water using kaolinite enhanced by nano-zero-valent iron and its mechanism[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1529-1535. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202105014.htm
    [25]
    于晓丹, 林鑫辰, 冯威, 等. Fe3O4/TiO2@生物碳骨架复合材料的一步法制备及UV-Fenton催化性能[J]. 高等学校化学学报, 2018, 39(11): 2500-2506. doi: 10.7503/cjcu20180450

    YU X D, LIN X C, FENG W, et al. One-step preparation and UV-Fenton properties of Fe3O4/TiO2@biochar composities[J]. Chemical Journal of Chinese Universities, 2018, 39(11): 2500-2506. doi: 10.7503/cjcu20180450
    [26]
    FAZLZADEH M, RAHMANI K, ZAREI A, et al. A novel green synthesis of zero valent iron nanoparticles (nZVI) using three plant extracts and their efficient application for removal of Cr(Ⅵ) from aqueous solutions[J]. Advanced Powder Technology, 2017, 28(1): 122-130. doi: 10.1016/j.apt.2016.09.003
    [27]
    HUANG X, WU H, LIAO X, et al. One-step, size-controlled synthesis of gold nanoparticles at room temperature using plant tannin[J]. Green Chemistry, 2010, 12(3): 395-399. doi: 10.1039/B918176H
    [28]
    刘韦伶. 溴甲苯分子及其阳离子的红外光谱研究[D]. 曲阜: 曲阜师范大学, 2013.

    LIU W L. Theoretical study of the infrared spectra of bromotoluene and its cation[D]. Qufu: Qufu Normal University, 2013.
    [29]
    YANG C, GE C, LI X, et al. Does soluble starch improve the removal of Cr(Ⅵ) by nZVI loaded on biochar[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111552/1-10.
    [30]
    ZHAN J, YANG X, ZHANG X, et al. Bioprecipitation facilitates the green synthesis of sulfidated nanoscale zero-valent iron particles for highly selective dechlorination of trichloroethene[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106050/1-12.
    [31]
    程丽. 生物炭负载硫铁化合物的绿色合成及其去除水中铅的研究[D]. 哈尔滨: 东北农业大学, 2020.

    CHEN L. Study on green synthesis of biochar supported iron sulfide composites for removal of Pb2+ from aqueous solution[D]. Harbin: Northeast Agricultural University, 2020.
    [32]
    邓小强. 绿茶提取液合成生物炭负载纳米零价铁修复六价铬污染的地下水[D]. 太原: 太原理工大学, 2018.

    DENG X Q. Biochar supported nanoscale zero valent iron synthesized using green tea extract remove hexavalent chromiumfrom groundwater[D]. Taiyuan: Taiyuan University of Technology, 2018.
    [33]
    JURIKOVA A, CSACH K, MISKUF J, et al. Thermal analysis of magnetic nanoparticles modified with dextran[J]. Acta Physica Sinica, 2012, 121(5/6): 1296-1298.
  • Related Articles

    [1]LÜ Yetong, QIN Yexia, WANG Mei, YANG Shuaijun, ZHANG Lei. The Influence and Mechanism of Grain Size on the Reliability of Multilayer Ceramic Capacitors[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(3): 1-8. DOI: 10.6054/j.jscnun.2024031
    [2]HU Yu, ZHANG Nan, PAN Xiaobin, ZHANG Dong, LI Li, LI Shiying, ZHANG Lingfan. Effect of Anions on Removal Efficiency of Green Synthesized Iron Nanoparticles[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(6): 63-70. DOI: 10.6054/j.jscnun.2023079
    [3]JING Hua, JI Lili, ZHOU Yarui, GUO Jian, SUN Jiaxin, LU Shiyao. Green Synthesized ZnO Nanoparticles from Spartina alterniflora and their Photocatalytic and Antibacterial Properties[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 24-29. DOI: 10.6054/j.jscnun.2022022
    [4]ZHANG Cheng, LI Ming. The Effect of Rashba Spin-Orbital Coupling on Electronic Spin Susceptibility[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 26-30. DOI: 10.6054/j.jscnun.2020074
    [5]WANG Yuchun, LIU Zhaorong, TAN Chao, SUN Hong, LI Zhong. The Effect of the Support Grain Size on the Catalytic Performance of the CuY Catalyst[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 37-42. DOI: 10.6054/j.jscnun.2020058
    [6]WANG Xi, DONG Haitai, SHI Siqi, CHEN Kexin, LI Laisheng, DU Xuan. Fabrication of a Cu_2O/(rGO-TiO_2) Composite Film for Efficient Photocatalytic Hydrogen Production[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(4): 37-43. DOI: 10.6054/j.jscnun.2018063
    [7]YI Y Q, FANG Z Q. Enhanced Mineralization of Metronidazole by Synergism of Hydrogen Peroxide and Nanoscale Zero-Valent Iron[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(1): 28-32. DOI: 10.6054/j.jscnun.2018016
    [8]LI Haijie*. Performance Improvement of Microbial Fuel Cell for Electricity Generation by Composite Graphene-Carbon Nano-Tube Modified Anode[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(4): 45-49. DOI: 10.6054/j.jscnun.2015.12.018
    [9]Simulation investigation on the generation of waste gas from municipal sewerage system: The case of catering sewage﹡[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(2).
    [10]Fractal dimensions of soil particles and related affecting factors from the valley of upper Minjiang River[J]. Journal of South China Normal University (Natural Science Edition), 2011, 0(1).
  • Cited by

    Periodical cited type(7)

    1. 洪森荣,朱盈盈,李紫莹,胡明艳,欧阳克蕙. 盐胁迫下金花菜和紫花苜蓿试管苗的转录组分析及其耐盐基因筛选. 中国农学通报. 2023(03): 111-118 .
    2. 王星哲,武悦,王艺煊,王瑞莲,周文新,李瑞莲,陈阳. 玉米发芽期响应盐胁迫的转录组分析. 分子植物育种. 2023(02): 370-378 .
    3. 董亚茹,聂玉霞,李云芝,赵东晓,耿兵,王照红. 瞬时过表达MnERF2基因对桑树耐盐性的影响. 山东农业科学. 2022(04): 9-16 .
    4. 辛建攀,李燕,赵楚,田如男. 镉胁迫下梭鱼草叶片转录组测序及苯丙烷代谢途径相关基因挖掘. 生物技术通报. 2022(06): 198-210 .
    5. 张超,马晓丽,卢晓峰,李刚,耿怡爽,孙云保,杨修一,耿计彪. 盐分胁迫下土施甲哌■对棉苗叶片生理和根系形态的影响. 江苏农业科学. 2022(22): 81-86 .
    6. 陈静,陈芸,热依麦阿依·阿布都艾尼,方志刚,凯迪日耶·玉苏普,马刘峰. 月季插穗不定根起始的转录组分析和关键基因筛选. 华南师范大学学报(自然科学版). 2021(03): 54-63 .
    7. 洪森荣,陈轩宇,李文丽,张座栋,刘军,刘佳,蔡红,陈荣华. 盐胁迫对怀玉山三叶青2个栽培种试管苗生理特性和次生代谢产物的影响. 山东农业科学. 2021(09): 38-45 .

    Other cited types(5)

Catalog

    Article views (449) PDF downloads (113) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return