Citation: | ZHU Ximiao, LIU Jinhua, LIAO Gaozu, LENG Chengmeng, XU Xiaochun, FANG Jianzhang. The Efficient Degradation of Bisphenol A with Ozonation Photocatalyzed by TiO2-rGO Composites under UV Irradiation[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 40-47. DOI: 10.6054/j.jscnun.2022056 |
[1] |
JOURSHABANI M, DOMINIC J A, ACHARI G, et al. Syn-ergetic photocatalytic ozonation using modified graphitic carbon nitride for treatment of emerging contaminants under UVC, UVA and visible irradiation[J]. Chemical Engineering Science, 2019, 209: 115181/1-13.
|
[2] |
韩瑶, 李丽君, 赵荣梅, 等. 不同形态无机氮对水环境中双酚A光降解的影响[J]. 环境科学学报, 2022, 42(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202205027.htm
HAN Y, LI L J, ZHAO R M, et al. The effect of different forms of inorganic nitrogen on photodegradation of bisphenol A in water environment[J]. Acta Scientiae Circumstantiae, 2022, 42(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202205027.htm
|
[3] |
卜鑫焱, 黄权龙, 赵西连, 等. WO3/C/Ag3PO4复合材料光催化降解双酚A[J]. 精细化工, 2021, 38(3): 496-503. https://www.cnki.com.cn/Article/CJFDTOTAL-JXHG202103008.htm
PU X Y, HUANG Q L, ZHAO X L, et al. WO3/C/Ag3PO4 composites for photocatalytic degradation of bisphenol A[J]. Fine Chemicals, 2021, 38(3): 496-503. https://www.cnki.com.cn/Article/CJFDTOTAL-JXHG202103008.htm
|
[4] |
BOUGARRANI S, BAICHA Z, LATRACH L, et al. Improving the imazapyr degradation by photocatalytic ozonation: a comparative study with different oxidative chemical Processes[J]. Processes, 2020, 8: 1446-1446. doi: 10.3390/pr8111446
|
[5] |
AN W J, TIAN L Y, HU J S, et al. Efficient degradation of organic pollutants by catalytic ozonation and photocatalysis synergy system using double-functional MgO/g-C3N4 catalyst[J]. Applied Surface Science, 2020, 534: 147518/1-10.
|
[6] |
王熙, 董海太, 石思琦, 等. Cu2O/(rGO-TiO2)复合薄膜的制备及其光催化产氢性能[J]. 华南师范大学学报(自然科学版), 2018, 50(4): 37-43. doi: 10.6054/j.jscnun.2018063
WANG X, DONG H T, SHI S Q, et al. Fabrication of a Cu2O/(rGO-TiO2)composite film for efficient photocatalytic hydrogen production[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(4): 37-43. doi: 10.6054/j.jscnun.2018063
|
[7] |
PAN X, ZHAO Y, LIU S, et al. Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts[J]. ACS Applied Materials and Interfaces, 2012, 4(8): 3944-3950. doi: 10.1021/am300772t
|
[8] |
JIANG R, ZHU H Y, FU Y Q, et al. Photocatalytic decolorization of congo red wastewater by magnetic ZnFe2O4/graphene nanosheets composite under simulated solar light irradiation[J]. Ozone: Science & Engineering, 2019, 42(2): 174-182.
|
[9] |
HUMMERS W S, OFFEMAN R E. Preparation of graph-itic oxide[J]. Journal of the American Chemical Society, 1958, 80: 1339-1339. doi: 10.1021/ja01539a017
|
[10] |
曾雄丰, 王梦幻, 王建省, 等. TiO2/石墨烯夹层结构复合材料的制备及光催化性能[J]. 复合材料学报, 2022, 39(2): 656-663. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202202021.htm
ZENG X F, WANG M H, WANG J X, et al. Preparation and photocatalytic properties TiO2/graphene nanocomposites with sandwich structure[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 656-663. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202202021.htm
|
[11] |
CHÁVEZ A M, SOLÍS R R, BELTRÁN F J. Magnetic graphene TiO2-based photocatalyst for the removal of pollutants of emerging concern in water by simulated sunlight aided photocatalytic ozonation[J]. Applied Catalysis B: Environmental, 2020, 262: 118275/1-13.
|
[12] |
夏振昊, 唐晓宁, 张彬, 等. 钼系光催化抗菌材料的制备及性能研究[J]. 稀有金属材料与工程, 2021, 50(5): 1817-1825. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE202105044.htm
XIA Z H, TANG X N, ZHANG B, et al. Preparation and properties of molybdenum photocatalytic antibacterial materials[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1817-1825. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE202105044.htm
|
[13] |
倪洁, 陈越军, 吕东风, 等. 介孔氮化钛粉体还原氮化演变过程及电化学性能[J]. 稀有金属材料与工程, 2021, 50(12): 4402-4409. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE202112029.htm
NI J, CHEN Y J, L D F, et al. Reduction nitride evolution and electrochemical properties of mesoporous titanium nitride powder[J]. Rare Metal Materials and Engineering, 2021, 50(12): 4402-4409. https://www.cnki.com.cn/Article/CJFDTOTAL-COSE202112029.htm
|
[14] |
LI T F, WANG T C, QU G Z, et al. Synthesis and photocatalytic performance of reduced graphene oxide-TiO2 nanocomposites for Orange Ⅱ degradation under UV light irradiation[J]. Environmental Science and Pollution Research, 2017, 24: 12416-12425. doi: 10.1007/s11356-017-8927-3
|
[15] |
JAIMY K B, GHOSH S, SANKAR S, et al. An aqueous sol-gel synthesis of chromium(Ⅲ) doped mesoporous titanium dioxide for visible light photocatalysis[J]. Materials Research Bulletin, 2011, 46(6): 914-921. doi: 10.1016/j.materresbull.2011.02.030
|
[16] |
GONÇALVES B S, SILVA L, SOUZA T, et al. Solvent effect on the structure and photocatalytic behavior of TiO2-rGO nanocomposites[J]. Journal of Materials Research, 2019, 34(23): 3918-3930. doi: 10.1557/jmr.2019.342
|
[17] |
谢怡婷, 谭涓, 王亚飞, 等. 还原氧化石墨烯/介孔TiO2复合材料的合成及其光解水制氢性能[J]. 无机化学学报, 2018, 34(12): 2153-2160. doi: 10.11862/CJIC.2018.267
XIE Y T, TAN J, WANG Y F, et al. Synthesis and photocatalytic performance of mesoporous rGO/m-TiO2 composites for hydrogen production by photocatalytic water splitting[J]. Chinese Journal of Inorganic Chemistry, 2018, 34(12): 2153-2160. doi: 10.11862/CJIC.2018.267
|
[18] |
陈可欣, 李立峰, 王熙, 等. Z型Cu2O-(rGO-TiO2)光催化剂的制备及其对甲基橙的降解性能[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 45-51. doi: 10.6054/j.jscnun.2020093
CHEN K X, LI L F, WANG X, et al. The preparation of Z-scheme Cu2O-(rGO-TiO2) photocatalyst and its performance in methyl orange degradation[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 45-51. doi: 10.6054/j.jscnun.2020093
|
[19] |
CAO M H, WANG P F, AO Y H, et al. Photocatalytic degradation of tetrabromobisphenol A by a magnetically separable graphene-TiO2 composite photocatalyst: mechanism and intermediates analysis[J]. Chemical Engineering Journal, 2015, 264: 113-124. doi: 10.1016/j.cej.2014.10.011
|
[20] |
RODRÍGUEZ E M, FERNÁNDEZ G, ALVAREZ P M, et al. TiO2 and Fe (Ⅲ) photocatalytic ozonation processes of a mixture of emergent contaminants of water[J]. Water Research, 2012, 46(1): 152-166. doi: 10.1016/j.watres.2011.10.038
|
[21] |
LING Y, LIAO G Z, XU P, et al. Fast mineralization of acetaminophen by highly dispersed Ag-g-C3N4 hybrid assisted photocatalytic ozonation[J]. Separation and Purification Technology, 2019, 216: 1-8. doi: 10.1016/j.seppur.2019.01.057
|
[22] |
邓燕萍, 杨达, 乔洪舰, 等. 石墨烯/TiO2复合材料光催化降解模拟染料废水的研究[J]. 首都师范大学学报(自然科学版), 2019, 40(4): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSX201904007.htm
DENG Y P, YANG D, QIAO H J, et al. The study of photocatalytic degradation of simulated wastewater by graphene/TiO2 composites[J]. Journal of Capital Normal University(Natural Science Edition), 2019, 40(4): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SDSX201904007.htm
|
[23] |
QI C D, LIU X T, LIN C Y, et al. Activation of peroxymonosulfate by microwave irradiation for degradation of organic contaminants[J]. Chemical Engineering Journal, 2017, 315: 201-209. doi: 10.1016/j.cej.2017.01.012
|
[24] |
WANG F F, YU X L, GE M F, et al. One-step synthesis of TiO2/γ-Fe2O3/GO nanocomposites for visible light-driven degradation of ciprofloxacin[J]. Chemical Engineering Journal, 2020, 384: 123381/1-8.
|
[25] |
XIAO J D, RABEAH J, YANG J, et al. Fast electron tran-sfer and ·OH formation: key features for high activity in visible-light-driven ozonation with C3N4 Catalysts[J]. ACS Catalysis, 2017, 7: 6198-6206. doi: 10.1021/acscatal.7b02180
|
1. |
臧慧敏,梁凤英,杜艳青,额尔敦,申键,武世奎. Ag@AgCl/TiO_2/GO催化剂制备及其光催化性能. 工业催化. 2023(05): 36-41 .
![]() | |
2. |
张文平. 浅谈紫外光催化氧化技术在工业废水处理中的应用. 低碳世界. 2023(07): 7-9 .
![]() |