• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHAI Yunqiu, ZHANG Qianqian, LIU Fang, YING Guangguo, LIU Wangrong. The Progress in the Research on Carbon Emissions from Livestock and Poultry Breeding in China[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 72-82. DOI: 10.6054/j.jscnun.2022046
Citation: ZHAI Yunqiu, ZHANG Qianqian, LIU Fang, YING Guangguo, LIU Wangrong. The Progress in the Research on Carbon Emissions from Livestock and Poultry Breeding in China[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 72-82. DOI: 10.6054/j.jscnun.2022046

The Progress in the Research on Carbon Emissions from Livestock and Poultry Breeding in China

More Information
  • Received Date: June 09, 2021
  • Available Online: July 28, 2022
  • It is urgent to explore measures for reducing carbon emissions in order to achieve the goal that the global temperature will not rise above 2 ℃. Livestock and poultry breeding is an important source of carbon emissions. The progress in the research on carbon emissions from domestic livestock and poultry breeding is summarized and the calculation method, spatio-temporal characteristics, factors and emission reduction measures regarding carbon emissions from livestock and poultry breeding are introduced.
  • [1]
    MA A, ZHAO H. Studies on emissions and measures of reduction and control of greenhouse gas during lifecycle of dairy products[J]. Procedia Environmental Sciences, 2012, 13: 2310-2315. doi: 10.1016/j.proenv.2012.01.220
    [2]
    SKEA J, SHUKLA P, KlLKlŞ Ş. Climate Change 2022: Mitigation of Climate Change[EB/OL]. https://www.ipcc.ch/report/ar6/wg3.
    [3]
    XUE Y N, LUAN W X, WANG H, et al. Environmental and economic benefits of carbon emission reduction in animal husbandry via the circular economy: case study of pig farming in Liaoning, China[J]. Journal of Cleaner Production, 2019, 238: 117968/1-8.
    [4]
    GUO Y X, WANG Y D, CHEN S F, et al. Inventory of spatio-temporal methane emissions from livestock and poultry farming in Beijing[J]. Sustainability, 2019, 11(14): 3858/1-11.
    [5]
    TRUONG A H, KIM M T, NGUYEN T T, et al. Methane, nitrous oxide and ammonia emissions from livestock farming in the Red River Delta, Vietnam: an inventory and projection for 2000—2030[J]. Sustainability, 2018, 10(10): 3826/1-8. https://www.preprints.org/manuscript/201809.0600/v1
    [6]
    MISIUKIEWICZ A, GAO M, FILIPIAK W, et al. Methanogens and methane production in the digestive systems of nonruminant farm animals[J]. Animal, 2021, 15(1): 100060/1-8.
    [7]
    孙康泰, 王小龙, 张建民, 等. "十三五"国家重点研发计划中的畜牧兽医科技布局与评述[J]. 畜牧兽医学报, 2020, 51(1): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-XMSY202001023.htm

    SUN K T, WANG X L, ZHANG J M, et al. The distribution and review of national key research and development program in animal husbandry and veterinary medicine field during the 13th five-year period[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(1): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-XMSY202001023.htm
    [8]
    田素妍, 郑微微, 周力. 中国低碳养殖的环境库兹涅茨曲线特征及其成因分析[J]. 资源科学, 2012, 34(3): 481-493. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201203015.htm

    TIAN S Y, ZHEN W W, ZHOU L. Characteristics of environmental Kuznets curve for the low carbon breeding in China and its causes[J]. Resources Science, 2012, 34 (3): 481-493. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201203015.htm
    [9]
    师帅, 李翠霞, 李媚婷. 畜牧业"碳排放"到"碳足迹"核算方法的研究进展[J]. 中国人口·资源与环境, 2017, 27(6): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201706005.htm

    SHI S, LI C X, LI M T. Review of research from carbon emissions to carbon footprint in livestockhusbandry[J]. China Population, Resources and Environment, 2017, 27(6): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201706005.htm
    [10]
    李鹏, 吴文昊, 郭伟. 连续监测方法在全国碳市场应用的挑战与对策[J]. 环境经济研究, 2021, 6(1): 77-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJN202101006.htm

    LI P, WU W H, GUO W. The challenges and recommendations of application of the measurement-based monitoring methodology in national carbon market[J]. Journal of Environmental Economics, 2021, 6(1): 77-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJN202101006.htm
    [11]
    RENAND G, MAUPETIT D. Assessing individual differences in enteric methane emission among beef heifers using the greenfeed emission monitoring system: effect of the length of testing period on precision[J]. Animal Production Science, 2016, 56(3): 218-223. doi: 10.1071/AN15429
    [12]
    JI B, ZHENG W, GATES R S, et al. Design and performance evaluation of the upgraded portable monitoring unit for air quality in animal housing[J]. Computers and Electronics in Agriculture, 2016, 124: 132-140. doi: 10.1016/j.compag.2016.03.030
    [13]
    KAIYALA K J, RAMSAY D S. Direct animal calorimetry, the underused gold standard for quantifying the fire of life[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2011, 158(3): 252-264. https://www.sciencedirect.com/science/article/pii/S1095643310001339
    [14]
    GRAINGER C, CLARKE T, MCGINN S, et al. Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques[J]. Journal of Dairy Science, 2007, 90(6): 2755-2766. doi: 10.3168/jds.2006-697
    [15]
    MADSEN J, BJERG B S, HVELPLUND T, et al. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants[J]. Livestock Science, 2010, 129: 223-227. doi: 10.1016/j.livsci.2010.01.001
    [16]
    NAVARRO-VILLA A, O'BRIEN M, LÓPEZ S, et al. Modifications of a gas production technique for assessing in vitro rumen methane production from feedstuffs[J]. Animal Feed Science and Technology, 2011, 166: 163-174. https://www.sciencedirect.com/science/article/pii/S0377840111001830
    [17]
    郭鹏辉. 高寒牧区藏绵羊消化代谢与肠道甲烷排放特征[D]. 兰州: 兰州大学, 2020.

    GUO P H. The characteristics of digestion, metabolism and enteric methane emission of Tibetan sheep in the alpine pastoralarea[D]. Lanzhou: Lanzhou University, 2020.
    [18]
    PICKERING N, ODDY V, BASARAB J, et al. Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants[J]. Animal, 2015, 9(9): 1431-1440. doi: 10.1017/S1751731115000968
    [19]
    HRISTOV A, OH J, FIRKINS J, et al. Special topics-miti-gation of methane and nitrous oxide emissions from animal operations: I. a review of enteric methane mitigation options[J]. Journal of Animal Science, 2013, 91(11): 5045-5069. doi: 10.2527/jas.2013-6583
    [20]
    CUNHA C, LOPES N, VELOSO C, et al. Greenhouse gases inventory and carbon balance of two dairy systems obtained from two methane-estimation methods[J]. Science of the Total Environment, 2016, 571: 744-754. doi: 10.1016/j.scitotenv.2016.07.046
    [21]
    STORM I M, HELLWING A L F, NIELSEN N I, et al. Methods for measuring and estimating methane emission from ruminants[J]. Animals, 2012, 2(2): 160-183. doi: 10.3390/ani2020160
    [22]
    XU T W, ZHAO N, HU L Y, et al. Characterizing CH4, CO2 and N2O emission from barn feeding Tibetan sheep in Tibetan alpine pastoral area in cold season[J]. Atmospheric Environment, 2017, 157: 84-90. doi: 10.1016/j.atmosenv.2017.03.023
    [23]
    HUHTANEN P, BAYAT A R, LUND P, et al. Short communication: variation in feed efficiency hampers use of carbon dioxide as a tracer gas in measuring methane emissions in on-farm conditions[J]. Journal of Dairy Science, 2020, 103(10): 9090-9095. doi: 10.3168/jds.2020-18559
    [24]
    KUMARI S, FAGODIYA R, HILOIDHARI M, et al. Methane production and estimation from livestock husbandry: a mechanistic understanding and emerging mitigation options[J]. Science of the Total Environment, 2020, 709: 136135/1-14.
    [25]
    QIAO J Y, TAN Z L, GUAN L L, et al. Effects of hydrogen in headspace and bicarbonate in media on rumen fermentation, methane production and methanogenic population using in vitro gas production techniques[J]. Animal Feed Science and Technology, 2015, 206: 19-28. doi: 10.1016/j.anifeedsci.2015.05.004
    [26]
    姚成胜, 钱双双, 李政通, 等. 中国省际畜牧业碳排放测度及时空演化机制[J]. 资源科学, 2017, 39(4): 698-712. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201704011.htm

    YAO C S, QIAN S S, LI ZT, et al. Provincial animal husbandry carbon emissions in China and temporal-spatial evolution mechanism[J]. Resources Science, 2017, 39(4): 698-712. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201704011.htm
    [27]
    DONG H M, ZHU Z P, LI Y E, et al. Tier Ⅱ MRV of livestock emissions in China-final report & annexes[EB/OL], 2020. http://cgspace.cgiar.org.
    [28]
    EGGLESTON H, BUENDIA L, MIWA K, et al. 2006 IPCC guidelines for national greenhouse gas inventories[EB/OL]. http://dx.doi.org/10/016/S1462-9011(99)00023-4.
    [29]
    CHEN S Q, SONG D, YANG J, et al. Life-cycle emission mitigation inventory and environmental benefit of household biogas mode[J]. China Population, Resources and Environment, 2012, 22(8): 76-83.
    [30]
    LUO T, YUE Q, YAN M, et al. Carbon footprint of China's livestock system-a case study of farm survey in Sichuan Province, China[J]. Journal of Cleaner Production, 2015, 102: 136-143. doi: 10.1016/j.jclepro.2015.04.077
    [31]
    李虎, 王立刚, 邱建军. 基于DNDC模型的华北典型农田氮素损失分析及综合调控途径[J]. 中国生态农业学报, 2012, 20(4): 414-420. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201204006.htm

    LI H, WANG L G, QIU J J. Nitrate loss simulated with DNDC model and control technologies in typical cropland of North China[J]. Chinese Journal of Eco-Agriculture, 2012, 20(4): 414-420. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201204006.htm
    [32]
    黄文强. 规模化养殖场牛奶生产碳足迹评估方法与案例分析[D]. 北京: 中国农业科学院, 2015.

    HUANG W Q. Carbon footprint assessment methodology of milk production in intensive dairy farm and case study[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
    [33]
    MENGHISTU H T, ZENEBE A A, MAWCHA G T, et al. Greenhouse gas emission and mitigation potential from livestock production in the drylands of Northern Ethiopia[J]. Carbon Management, 2021, 12(3): 289-306. doi: 10.1080/17583004.2021.1921620
    [34]
    ROTZ C, MONTES F, CHIANESE D. The carbon footprint of dairy production systems through partial life cycle assessment[J]. Journal of Dairy Science, 2010, 93(3): 1266-1282. doi: 10.3168/jds.2009-2162
    [35]
    LESSCHEN J P, van DENBERG M, WESTHOEK H, et al. Greenhouse gas emission profiles of European livestock sectors[J]. Animal Feed Science and Technology, 2011, 166: 16-28. https://www.sciencedirect.com/science/article/pii/S0377840111001775
    [36]
    林斌, 徐孟, 汪笑溪. 中国农业碳减排政策、研究现状及展望[J]. 中国生态农业学报, 2022, 30(4): 500-515. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202204002.htm

    LIN B, XU M, WANG X X. Mitigation of greenhouse gas emissions in China's agricultural sector: current status and future perspectives[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 500-515. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202204002.htm
    [37]
    MSANGI S, ENAHORO D, HERRERO M, et al. Integrating livestock feeds and production systems into agricultural multi-market models: the example of IMPACT[J]. Food Policy, 2014, 49: 365-377. doi: 10.1016/j.foodpol.2014.10.002
    [38]
    BRITZ W, VERBURG P H, LEIP A. Modelling of land cover and agricultural change in Europe: combining the CLUE and CAPRI-Spat approaches[J]. Agriculture, Ecosystems & Environment, 2011, 142(1/2): 40-50. https://www.sciencedirect.com/science/article/pii/S0167880910000885
    [39]
    WEISS F, LEIP A. Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model[J]. Agriculture, Ecosystems & Environment, 2012, 149: 124-134. https://www.sciencedirect.com/science/article/pii/S0167880911004415
    [40]
    何炫蕾. 中国农业碳排放、农业生产效率及经济发展的实证研究[D]. 兰州: 兰州大学, 2018.

    HE X L. An empirical study on agricultural carbon emission, agricultural production efficiency and economic development in China[D]. Lanzhou: Lanzhou University, 2018.
    [41]
    黄秀全. 中国农业绿色全要素生产率时空特征及影响因素研究[D]. 重庆: 重庆工商大学, 2020.

    HUANG X Q. Study on the Spatio-temporal characteristics and influencing factors of agricultural green total factor productivity in China[D]. Chongqing: Chongqing Technology and Business University, 2020.
    [42]
    田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ202203007.htm

    TIAN Y, YIN M H. Re-evaluation of China's agricultural carbon emissions: basic status, dynamic evolution and spatial spillover effects[J]. Chinese Rural Economy, 2022(3): 104-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ202203007.htm
    [43]
    胡双利. 基于LCA的我国畜禽产品生产碳排放评估及减排潜力研究[D]. 湘潭: 湖南科技大学, 2015.

    HU S L. Study on the evaluation of the livestock and poultry production of carbon emissions and mitigation potential in China based on LCA[D]. Xiangtan: Hunan University of Science and Technology, 2015.
    [44]
    吴义根. 低碳约束下的中国农业生产率研究[D]. 北京: 中国农业大学, 2019.

    WU Y G. Research on agricultural productivity in China under low carbon emission constraints: perspective based on spatial econometrics[D]. Beijing: China Agricultural University, 2019.
    [45]
    杨宁. 中国农业碳排放、水消费和增加值关系研究[D]. 大连: 东北财经大学, 2019.

    YANG N. Study on the relationship between China's agricultural carbon emissions, water consumption and added value[D]. Dalian: Dongbei University of Finance and Economics, 2019.
    [46]
    苏旭峰, 杨小东, 冉启英. 基于碳排放视角的中国畜牧业绿色增长分析[J]. 生态经济, 2022, 38(4): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ202204010.htm

    SU X F, YANG X D, RAN Q Y. Analysis on the green growth of animal husbandry in China from the perspective of carbon emissions[J]. Ecological Economy, 2022, 38 (4): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ202204010.htm
    [47]
    胡向东, 王济民. 中国畜禽温室气体排放量估算[J]. 农业工程学报, 2010, 26(10): 247-252. doi: 10.3969/j.issn.1002-6819.2010.10.042

    HU X D, WANG J M. Estimation of livestock greenhouse gases discharge in China[J]. Transactions of the CSAE, 2010, 26(10): 247-252. doi: 10.3969/j.issn.1002-6819.2010.10.042
    [48]
    郭险峰, 艾静静. 农业碳排放的时空演变、影响因素及脱钩效应研究——基于31省2000—2019年面板数据[J]. 西昌学院学报(自然科学版), 2022, 36(1): 9-15, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-XCNY202201003.htm

    GUO X F, AI J J. Temporal and spatial variation, influencing factors and decoupling effect of agricultural carbon emissions: based on panel data of 31 provinces from 2000 to 2019[J]. Journal of Xichang University(Natural Science Edition), 2022, 36(1): 9-15, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-XCNY202201003.htm
    [49]
    李潇潇, 张振东. OECD成员国碳排放效率时空演变与影响因素研究[J/OL]. 河北环境工程学院学报, 2022: 1-7. Doi: 10.13358/j.issn.2096-9309.2022.0103.01.

    LI X X, ZHANG Z D. Spatiotemporal evolution and impact of carbon emission efficiency of OECD member countries factor research[J/OL]. Journal of Hebei University of Environmental Engineering, 2022: 1-7. Doi: 10.13358/j.issn.2096-9309.2022.0103.01.
    [50]
    吴强, 张园园, 张明月. 中国畜牧业碳排放的量化评估、时空特征及动态演化: 2001—2020[J]. 干旱区资源与环境, 2022, 36(6): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202206009.htm

    WU Q, ZHANG YY, ZHANG M Y. Quantitative assessment, temporal and spatial characteristics and dynamic evolution of China's animal husbandry carbon emissions[J]. Journal of Arid Land Resources and Environment, 2022, 36(6): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202206009.htm
    [51]
    徐丽, 曲建升, 吴金甲, 等. 中国农牧业碳排放时空变化及预测[J]. 生态与农村环境学报, 2019, 35(10): 1232-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201910002.htm

    XU L, QU J S, WU J J, et al. Spatial-temporal dynamics and prediction of carbon emission from agriculture and animal husbandry in China[J]. Journal of Ecology and Rural Environment, 2019, 35(10): 1232-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201910002.htm
    [52]
    田云. 中国低碳农业发展: 生产效率、空间差异与影响因素研究[D]. 武汉: 华中农业大学, 2015.

    TIAN Y. The development of China's low-carbon agriculture: production efficiency, spatial differences and influencing factors[D]. Wuhan: Huazhong Agricultural University, 2015.
    [53]
    侯麟科, 仇焕广, 崔永伟, 等. 环境污染与畜牧业空间布局研究[J]. 中国人口·资源与环境, 2011, 21(12): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201112010.htm

    HOU L K, QIU H G, CUI Y W, et al. Study on environmental pollution and spatial distribution of animal husbandry[J]. China Population, Resources and Environment, 2011, 21(12): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201112010.htm
    [54]
    陈瑶, 尚杰. 四大牧区畜禽业温室气体排放估算及影响因素分解[J]. 中国人口·资源与环境, 2014, 24(12): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201412012.htm

    CHEN Y, SHANG J. Estimation and effecting factor decomposition of green house gas emission of animal husbandry industry in four pastoral areas[J]. China Population Resources and Environment, 2014, 24(12): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201412012.htm
    [55]
    GUO H P, FAN B Q, PAN C L. Study on mechanisms underlying changes in agricultural carbon emissions: a case in Jilin Province, China, 1998—2018[J]. International Journal of Environmental Research Public Health, 2021, 18(3): 919/1-17.
    [56]
    李俊杰. 民族地区农地利用碳排放测算及影响因素研究[J]. 中国人口·资源与环境, 2012, 22(9): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201209007.htm

    LI J J. Research on characteristics and driving factors of agricultural land carbon emission in provinces of minorities in China[J]. China Population Resources and Environment, 2012, 22(9): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201209007.htm
    [57]
    XIONG C H, SU W Z, LI H P, et al. Influencing mechanism of non-CO2 greenhouse gas emissions and mitigation strategies of livestock sector in developed regions of eastern China: a case study of Jiangsu province[J]. Environmental Science and Pollution Research, 2022, 29: 1-11.
    [58]
    詹晶, 张俊娜, 邓荣荣. 我国畜牧业低碳化发展的路径选择——基于畜牧业排放源对甲烷增长的回归分析[J]. 广西社会科学, 2012(9): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HSKX201209014.htm
    [59]
    甘雨田. 中国奶牛产业碳排放量估算及影响因素研究[D]. 哈尔滨: 东北农业大学, 2019.

    GAN Y T. Research on the estimation and influence factors of carbon emission of dairy cattle industry in China[D]. Harbin: Northeast Agricultural University, 2019.
    [60]
    孔凡斌, 王智鹏, 潘丹. 基于LCA方法的生猪产业温室气体排放时空特征分析——以鄱阳湖生态经济区为例[J]. 企业经济, 2016(9): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-QUIT201609025.htm

    KONG F B, WANG Z P, PANG D. Temporal and spatial characteristics of greenhouse gas emissions from pig industry based on LCA method-a case study of Poyang Lake Ecological Economic Zone[J]. Enterprise Economy, 2016(9): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-QUIT201609025.htm
    [61]
    杜红梅, 蒋礼. 湖南省生猪养殖业碳排放的影响因素分析[J]. 黑龙江畜牧兽医, 2016(18): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJX201618004.htm

    DU H M, JIANG L. Analysis on influencing factors of carbon emission from pig breeding industry in Hunan Province[J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(18): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJX201618004.htm
    [62]
    邹洁, 项朝阳. 中国大陆畜牧业环境效率测算及影响因素研究[J]. 环境污染与防治, 2016, 38(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201601017.htm

    ZOU J, XIANG C Y. Research on the livestock environmental efficiency in mainland China and its influencing factors[J]. Environmental Pollution & Control, 2016, 38(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201601017.htm
    [63]
    谢婷, 张慧, 何家军, 等. 华中地区畜牧业温室气体排放特征分析与预测[J]. 中国环境科学, 2020, 40(2): 564-572. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202002014.htm

    XIE T, ZHANG H, HE J J, et al. Characteristics and prediction of greenhouse gas emissions from livestock industry in Central China[J]. China Environmental Science, 2020, 40(2): 564-572. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202002014.htm
    [64]
    李阳, 陈敏鹏. 中国省域农业源非CO2温室气体排放的影响因素分析与峰值预测[J]. 环境科学学报, 2021, 41(12): 5174-5189. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202112042.htm

    LI Y, CHEN M P. Analysis of influencing factors and peak forecast of non-CO2 greenhouse gas emissions from provincial agricultural sources in China[J]. Acta Scientiae Circumstantiae, 2021, 41(12): 5174-5189. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202112042.htm
    [65]
    郭娇, 齐德生, 张妮娅, 等. 中国畜牧业温室气体排放现状及峰值预测[J]. 农业环境科学学报, 2017, 36(10): 2106-2113. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201710025.htm

    GUO J, QI D S, ZHANG N Y, et al. Chinese greenhouse gas emissions from livestock: trend and predicted peak value[J]. Journal of Agro-Environment Science, 2017, 36(10): 2106-2113. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201710025.htm
    [66]
    LLONCH P, HASKELL M, DEWHURST R, et al. Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective[J]. Animal, 2017, 11(2): 274-284. https://www.cambridge.org/core/journals/animal/article/current-available-strategies-to-mitigate-greenhouse-gas-emissions-in-livestock-systems-an-animal-welfare-perspective/2C1E6F2AA8B6608B9B5C49544EEB26F4
    [67]
    SCHILS R, ERIKSEN J, LEDGARD S, et al. Strategies to mitigate nitrous oxide emissions from herbivore production systems[J]. Animal, 2013, 7(S1): 29-40. https://www.cambridge.org/core/journals/animal/article/strategies-to-mitigate-nitrous-oxide-emissions-from-herbivore-production-systems/4F641EE6C19731E097520F503046EA31
    [68]
    WEI S, BAI Z, CHADWICK D, et al. Greenhouse gas and ammonia emissions and mitigation options from livestock production in peri-urban agriculture: Beijing-a case study[J]. Journal of Cleaner Production, 2018, 178: 515-525. https://www.sciencedirect.com/science/article/pii/S0959652617332511
    [69]
    YUE Q, XU X R, HILLIER J, et al. Mitigating greenhouse gas emissions in agriculture: from farm production to food consumption[J]. Journal of Cleaner Production, 2017, 149: 1011-1019. https://www.sciencedirect.com/science/article/pii/S0959652617303980
    [70]
    de VIVO R, ZICARELLI L. Influence of carbon fixation on the mitigation of greenhouse gas emissions from livestock activities in Italy and the achievement of carbon neutrality[J]. Translational Animal Science, 2021, 5(3): txab042/1-11.
    [71]
    ZHAO G, JI L S, JIA L, et al. Research and application of circular economy mode based on biogas energy as a significant technique[J]. Renewable Energy Resources, 2016, 34(10): 1574-1580.
    [72]
    LEWIS K A, TZILIVAKIS J, GREEN A, et al. Potential of feed additives to improve the environmental impact of European livestock farming: a multi-issue analysis[J]. International Journal of Agricultural Sustainability, 2015, 13(1): 55-68.
    [73]
    毛竹, 陈虹, 孙瑞钧, 等. 我国海洋碳汇建设现状、问题及建议[J]. 环境保护, 2022, 50(7): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202207007.htm

    MAO Z, CHEN H, SUN R J, et al. Analysis of marine carbon sink in China: current situation, problems and suggestions[J]. Environmental Protection, 2022, 50(7): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202207007.htm
    [74]
    刘天奇, 胡权义, 汤计超, 等. 长江中下游水稻生产固碳减排关键影响因素及技术体系[J]. 中国生态农业学报, 2022, 30(4): 603-615. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202204020.htm

    LIU T Q, HU Q Y, TANG J C, et al. Key influencing factors and technical system of carbon sequestration and emission reduction in rice production in the middle and lower reaches of the Yangtze River[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 603-615. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202204020.htm

Catalog

    Article views (988) PDF downloads (400) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return